Veritas™ High Availability Agent for WebSphere MQ Installation and Configuration Guide

AIX, HP-UX, Linux, Solaris

5.1
The software described in this book is furnished under a license agreement and may be used only in accordance with the terms of the agreement.

Agent Version: 5.1.12.0

Document version: 5.1.12.0.2

Legal Notice

Copyright © 2012 Symantec Corporation. All rights reserved.

Symantec, the Symantec logo, Veritas, Veritas Storage Foundation, CommandCentral, NetBackup, Enterprise Vault, and LiveUpdate are trademarks or registered trademarks of Symantec corporation or its affiliates in the U.S. and other countries. Other names may be trademarks of their respective owners.

The product described in this document is distributed under licenses restricting its use, copying, distribution, and decompilation/reverse engineering. No part of this document may be reproduced in any form by any means without prior written authorization of Symantec Corporation and its licensors, if any.

THE DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. SYMANTEC CORPORATION SHALL NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE INFORMATION CONTAINED IN THIS DOCUMENTATION IS SUBJECT TO CHANGE WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be commercial computer software as defined in FAR 12.212 and subject to restricted rights as defined in FAR Section 52.227-19 "Commercial Computer Software - Restricted Rights“ and DFARS 227.7202, "Rights in Commercial Computer Software or Commercial Computer Software Documentation", as applicable, and any successor regulations. Any use, modification, reproduction release, performance, display or disclosure of the Licensed Software and Documentation by the U.S. Government shall be solely in accordance with the terms of this Agreement.
Technical Support

Symantec Technical Support maintains support centers globally. Technical Support’s primary role is to respond to specific queries about product features and functionality. The Technical Support group also creates content for our online Knowledge Base. The Technical Support group works collaboratively with the other functional areas within Symantec to answer your questions in a timely fashion. For example, the Technical Support group works with Product Engineering and Symantec Security Response to provide alerting services and virus definition updates.

Symantec’s support offerings include the following:

- A range of support options that give you the flexibility to select the right amount of service for any size organization
- Telephone and/or Web-based support that provides rapid response and up-to-the-minute information
- Upgrade assurance that delivers software upgrades
- Global support purchased on a regional business hours or 24 hours a day, 7 days a week basis
- Premium service offerings that include Account Management Services

For information about Symantec’s support offerings, you can visit our website at the following URL:

www.symantec.com/business/support/index.jsp

All support services will be delivered in accordance with your support agreement and the then-current enterprise technical support policy.

Contacting Technical Support

Customers with a current support agreement may access Technical Support information at the following URL:

www.symantec.com/business/support/contact_techsupp_static.jsp

Before contacting Technical Support, make sure you have satisfied the system requirements that are listed in your product documentation. Also, you should be at the computer on which the problem occurred, in case it is necessary to replicate the problem.

When you contact Technical Support, please have the following information available:

- Product release level
Hardware information
Available memory, disk space, and NIC information
Operating system
Version and patch level
Network topology
Router, gateway, and IP address information
Problem description:
 - Error messages and log files
 - Troubleshooting that was performed before contacting Symantec
 - Recent software configuration changes and network changes

Licensing and registration
If your Symantec product requires registration or a license key, access our technical support Web page at the following URL:
www.symantec.com/business/support/

Customer service
Customer service information is available at the following URL:
www.symantec.com/business/support/
Customer Service is available to assist with non-technical questions, such as the following types of issues:
 - Questions regarding product licensing or serialization
 - Product registration updates, such as address or name changes
 - General product information (features, language availability, local dealers)
 - Latest information about product updates and upgrades
 - Information about upgrade assurance and support contracts
 - Information about the Symantec Buying Programs
 - Advice about Symantec's technical support options
 - Nontechnical presales questions
 - Issues that are related to CD-ROMs or manuals
Support agreement resources

If you want to contact Symantec regarding an existing support agreement, please contact the support agreement administration team for your region as follows:

- Asia-Pacific and Japan: customercare_apac@symantec.com
- Europe, Middle-East, and Africa: semea@symantec.com
- North America and Latin America: supportsolutions@symantec.com

Documentation

Product guides are available on the media in PDF format. Make sure that you are using the current version of the documentation. The document version appears on page 2 of each guide. The latest product documentation is available on the Symantec website.

https://sort.symantec.com/documents

Your feedback on product documentation is important to us. Send suggestions for improvements and reports on errors or omissions. Include the title and document version (located on the second page), and chapter and section titles of the text on which you are reporting. Send feedback to:

doc_feedback@symantec.com

For information regarding the latest HOWTO articles, documentation updates, or to ask a question regarding product documentation, visit the Storage and Clustering Documentation forum on Symantec Connect.

About Symantec Connect

Symantec Connect is the peer-to-peer technical community site for Symantec’s enterprise customers. Participants can connect and share information with other product users, including creating forum posts, articles, videos, downloads, blogs and suggesting ideas, as well as interact with Symantec product teams and Technical Support. Content is rated by the community, and members receive reward points for their contributions.

http://www.symantec.com/connect/storage-management
Chapter 1 Introducing the Veritas High Availability Agent for WebSphere MQ

About the Veritas agent for WebSphere MQ
What’s new in this agent
Supported software
Support matrix for IMF and in-depth monitoring
How the agent supports intelligent resource monitoring
WebSphere MQ agent functions
Online
Offline
Monitor
Clean

Chapter 2 Installing, upgrading, and removing the agent for WebSphere MQ

Before you install the Veritas agent for WebSphere MQ
Prerequisites for enabling i18n support
About the ACC library
Installing the ACC library
Installing the agent in a VCS environment
Installing the agent in VCS One environment
Installing the agent packages using the installer
Installing the agent package using the CLI
Adding the agent resource type definitions to the Policy Master Server on UNIX
Adding the agent resource type definitions to the Policy Master Server on Windows
Removing the agent in a VCS environment
Removing the agent in VCS One environment
Removing the agent packages using the installer
Removing the agent package using CLI
Removing the agent type definition from the Policy Master system on UNIX
Chapter 3 Configuring the agent for WebSphere MQ ... 35
About configuring the Veritas agent for WebSphere MQ ... 35
Importing the agent types files in a VCS environment ... 35
WebSphere MQ agent attributes ... 37
Executing a customized monitoring program ... 41

Chapter 4 Configuring the service group for WebSphere MQ using the Symantec High Availability Configuration wizard ... 43
Installing the agent for WebSphere MQ in VCS 6.0.2 ... 44
Typical VCS cluster configuration in a virtual environment 44
About configuring application monitoring using the Symantec High Availability solution for VMware ... 45
Getting ready to configure VCS service groups using the wizard 46
Before configuring application monitoring ... 47
Launching the Symantec High Availability Configuration wizard 48
Configuring the WebSphere MQ Queue Manager for high availability 50
Understanding service group configurations ... 55
Resource dependency ... 55
Service group dependency ... 56
Infrastructure service groups ... 56
Understanding configuration scenarios ... 56
Configuring a single instance/multiple instances in VCS 57
Configuring multiple WebSphere MQ Queue Manager instances in VCS using multiple runs of the wizard ... 57
Configuring multiple applications ... 58
Symantec High Availability Configuration wizard limitations 58
Troubleshooting ... 59
Symantec High Availability Configuration wizard displays blank panels 59
The Symantec High Availability Configuration wizard displays the "hadiscover is not recognized as an internal or external command" error ... 59
Running the 'hastop –all' command detaches virtual disks 59
Reviewing error log files ... 91
 Using WebSphere MQ log files ... 91
 Reviewing cluster log files ... 91
 Using trace level logging ... 92
Troubleshooting the configuration for IMF 92
 Known issues .. 95

Appendix A Sample Configurations .. 97
 About sample configurations for the agent for WebSphere MQ 97
 Sample agent type definition for WebSphere MQ 97
 VCS One ... 99
 Sample configuration when IMF is enabled 99
 Sample configuration in a VCS environment 99
 Sample configuration in a VCS One environment 101
 Sample service group configurations 101

Appendix B Changes introduced in previous releases 105
 Changes introduced in previous releases 105

Index .. 109
Introducing the Veritas High Availability Agent for WebSphere MQ

This chapter includes the following topics:

■ About the Veritas agent for WebSphere MQ
■ What’s new in this agent
■ Supported software
■ How the agent supports intelligent resource monitoring
■ WebSphere MQ agent functions

About the Veritas agent for WebSphere MQ

The Veritas High Availability agents monitor specific resources within an enterprise application. They determine the status of resources and start or stop them according to external events.

The Veritas agent for WebSphere MQ provides high availability for all WebSphere MQ Queue Managers in a cluster. The agent can bring a specific WebSphere MQ Queue Manager online and monitor the state of the Queue Manager. The agent can also detect failures and shut down the Queue Manager in case of a failure.

See the following Technical Support TechNote for the latest updates or software issues for this agent:

http://www.symantec.com/business/support/index?page=content&id=TECH46455
What’s new in this agent

The enhancement in this release of WebSphere MQ agent is as follows:

- In a virtual environment, you can configure the service group for WebSphere MQ using the Symantec High Availability Configuration wizard.

For information on the changes introduced in the previous releases:

See “Changes introduced in previous releases” on page 105.

Supported software

For information on the software versions that the agent for WebSphere MQ supports, see the Symantec Operations Readiness Tools (SORT) site: https://sort.symantec.com/agents.

Support matrix for IMF and in-depth monitoring

Depending on your version of Veritas Cluster Server (VCS) and the WebSphere MQ agent, the following features and functionality are supported.

<table>
<thead>
<tr>
<th>VCS and agent version</th>
<th>IMF capability</th>
<th>SecondLevelMonitor attribute</th>
<th>LevelTwoMonitorFreq attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCS 5.1 SP1 or later with WebSphere MQ agent 5.1.9.0 or later</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>VCS 5.1 SP1 with WebSphere MQ agent 5.1.8.0 or earlier</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>VCS 5.1 or earlier with WebSphere MQ agent 5.1.9.0 or later</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>VCS 5.1 or earlier with WebSphere MQ agent 5.1.8.0 or earlier</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
How the agent supports intelligent resource monitoring

With intelligent monitoring framework (IMF), VCS supports intelligent resource monitoring in addition to the poll-based monitoring. Poll-based monitoring polls the resources periodically whereas intelligent monitoring performs asynchronous monitoring.

When an IMF-enabled agent starts up, the agent initializes the asynchronous monitoring framework (AMF) kernel driver. After the resource is in a steady state, the agent registers with the AMF kernel driver, the details of the resource that are required to monitor the resource. For example, the agent for WebSphere MQ registers the PIDs of the WebSphere MQ Queue Manager processes with the AMF kernel driver. The agent’s imf_getnotification function waits for any resource state changes. When the AMF kernel driver module notifies the imf_getnotification function about a resource state change, the agent framework runs the monitor agent function to ascertain the state of that resource. The agent notifies the state change to VCS, which then takes appropriate action.

See the Veritas Cluster Server Administrator’s Guide for more information.

WebSphere MQ agent functions

The agent consists of resource type declarations and agent executables. The agent executables are organized into online, offline, monitor, and clean.

Online

The online function performs the following tasks:

- Verifies that the WebSphere MQ instance is not already online. If the instance is online, the online operation exits immediately.
- If the partial set of WebSphere MQ processes are running, the agent performs a process level clean up before starting the queue manager.
- Uses an IBM provided start script to start the WebSphere MQ using the name of the Queue Manager.
 You can also configure the online function to source a shell script or a program that the EnvFile attribute specifies. This script or program ensures that the required shell environment variables are properly set before executing the start script.
- Ensures that the WebSphere MQ Queue Manager is up and running successfully. The operation uses the wait period that the OnlineTimeout attribute specifies,
to enable the Queue Manager to initialize fully before allowing the monitor function to probe the resource.

- If the MQInstallationPath attribute is configured, the agent runs WebSphere MQ commands from the specified WebSphere MQ installation path.

Offline

The offline function performs the following tasks:

- Verifies that the WebSphere MQ instance is not already offline. If the instance is offline, the offline operation exits immediately.

- Uses an IBM provided stop script to stop the WebSphere MQ Queue Manager using the name of the Queue Manager. You can also configure the offline function to source a shell script or a program that the EnvFile attribute specifies. This script or program ensures that the required shell environment variables are properly set before executing the stop script.

- Ensures that the WebSphere MQ Queue Manager is given enough time to go offline successfully. The operation uses a wait period that the OfflineTimeout attribute specifies, to allow the WebSphere MQ Queue Manager to complete the offline sequence before allowing further probing of the resource. If the processes are found running even after the wait period, then these processes are killed.

- If the MQInstallationPath attribute is configured, the agent runs WebSphere MQ commands from the specified WebSphere MQ installation path.

Monitor

The monitor function monitors the states of the WebSphere MQ Queue Managers running on all nodes within the cluster.

The monitor function can monitor the following WebSphere MQ Queue Manager components:

- Queue Manager
- Channel Initiator
- Command Server (If the CommandServer attribute is set to 1)

The function performs the following tasks:

- The first level check searches for all system processes that must be running for a WebSphere MQ Queue Manager. If the first level check does not find
these processes running on the node, the check exits immediately, and reports the Queue Manager as offline.

The agent for WebSphere MQ also supports Intelligent Monitoring Framework (IMF) in the first level check. IMF enables intelligent resource monitoring. The agent for WebSphere MQ is IMF-aware and uses the asynchronous monitoring framework (AMF) kernel driver for resource state change notifications. See “How the agent supports intelligent resource monitoring” on page 72.

You can use the MonitorFreq key of the IMF attribute to specify the frequency at which the agent invokes the monitor function. See “MonitorFreq” on page 74.

The second level check, if configured, determines the status of the WebSphere MQ Queue Manager.

The second level check executes the `runmqsc` command and pings the Queue Manager to see if the manager is up and running. This check ensures that the processes are truly available for MQ Queue processing.

Note: The attribute used to configure the second level check and its frequency depends on the software versions of VCS and WebSphere MQ agent you have installed: For VCS 5.1 SP1 with WebSphereMQ agent version 5.1.9.0, use the LevelTwoMonitorFreq attribute. For VCS 5.1 or earlier with WebSphereMQ agent 5.1.8.0 or earlier, use the SecondLevelMonitor attribute.

Depending upon the MonitorProgram attribute, the monitor function can perform a customized check using a user-supplied monitoring utility. For details about executing a custom monitor program: See “Executing a customized monitoring program” on page 41.

When the WebSphere MQ resource is offline and the agent detects the queue manager processes as running, but the second level monitor check fails, the agent cleans these processes.

If the MQInstallationPath attribute is configured, the agent runs WebSphere MQ commands from the specified WebSphere MQ installation path.

Clean

In case of a failure or after an unsuccessful attempt to online or offline WebSphere MQ Queue Manager, the clean function removes any Queue Manager processes remaining in the system.

The function performs the following tasks:

- Attempts to gracefully shut down the WebSphere MQ Queue Manager.
If a graceful shutdown fails, the clean function looks for all the processes running for the WebSphere MQ Queue Manager, and cleans the processes.

- The clean function executes the IBM supplied utility, amqiclen to clean the IPC resources that are associated with the WebSphere MQ Queue Manager.

- If the CommandServer attribute is set to 1 for WebSphere MQ version 6.0 or later, the clean function kills the Command Server processes associated with the WebSphere MQ Queue Manager.

- If the MQInstallationPath attribute is configured, the agent runs WebSphere MQ commands from the specified WebSphere MQ installation path.

Note: For information about the additional functions of the agent for WebSphere MQ when IMF is enabled: See “Agent functions for the IMF functionality” on page 73.
Installing, upgrading, and removing the agent for WebSphere MQ

This chapter includes the following topics:

■ Before you install the Veritas agent for WebSphere MQ
■ About the ACC library
■ Installing the ACC library
■ Installing the agent in a VCS environment
■ Installing the agent in VCS One environment
■ Removing the agent in a VCS environment
■ Removing the agent in VCS One environment
■ Removing the ACC library
■ Upgrading the agent in a VCS environment
■ Upgrading the agent in a VCS One environment

Before you install the Veritas agent for WebSphere MQ

You must install the Veritas agent for WebSphere MQ on all the systems that will host WebSphere MQ Queue Manager service groups.
Ensure that you meet the following prerequisites to install the agent for WebSphere MQ.

For VCS, do the following:

- Install and configure Veritas Cluster Server.
 For more information on installing and configuring Veritas Cluster Server, refer to the *Veritas Cluster Server Installation Guide*.

- Remove any previous version of this agent.
 To remove the agent,
 See “Removing the agent in a VCS environment” on page 26.

- Install the latest version of ACC Library.
 To install or update the ACC Library package, locate the library and related documentation in the Agent Pack tarball:
 See “Installing the ACC library” on page 19.

Note: All non-global zones must be booted and in a running state at the time of package installation or un-installation. If the non-global zones are not booted, you may need to reinstall the package manually after booting the non-global zones.

For VCS One, do the following:

- Install and configure Veritas Cluster Server One.
 For more information on installing and configuring Veritas Cluster Server One, refer to the *Veritas Cluster Server One Installation Guide*.

- Remove any previous version of this agent.
 To remove the agent,
 See “Removing the agent in VCS One environment” on page 28.

Prerequisites for enabling i18n support

Perform the following steps to enable i18n support to the agent:

- Install ACCLib version 5.1.2.0 or later.
 See “Installing the ACC library” on page 19.

- For VCS 5.0 and earlier releases, copy the latest ag_i18n_inc.pm module from the following location on the agent pack disc.

Note: Review the readme.txt for instructions to copy this module.
Installing, upgrading, and removing the agent for WebSphere MQ

About the ACC library

The operations of a VCS agent depend on a set of Perl modules known as the ACC library. The library must be installed on each system in the cluster that runs the agent. The ACC library contains common, reusable functions that perform tasks, such as process identification, logging, and system calls.

Instructions to install or remove the ACC library on a single system in the cluster are given in the following sections. The instructions assume that the agent's tar file has already been extracted.

Installing the ACC library

Install the ACC library on each system in the cluster that runs an agent that depends on the ACC library.

To install the ACC library

1. Log in as superuser.
2. Download ACC Library.

You can download either the complete Agent Pack tarball or the individual ACCLib tarball from the Symantec Operations Readiness Tools (SORT) site (https://sort.symantec.com/agents).

Note: arch_dist is not applicable to AIX.

VCS 5.0 cd1/platform/arch_dist/vcs/application/i18n_support/5.0
VCS 4.1 cd1/platform/arch_dist/vcs/application/i18n_support/4.1
VCS 4.0 cd1/platform/arch_dist/vcs/application/i18n_support/4.0

where arch_dist takes the following values:
'sol_sparc' for Solaris SPARC
'sol_x64' for Solaris x64
'generic' for HP-UX and Linux

About the ACC library

The operations of a VCS agent depend on a set of Perl modules known as the ACC library. The library must be installed on each system in the cluster that runs the agent. The ACC library contains common, reusable functions that perform tasks, such as process identification, logging, and system calls.

Instructions to install or remove the ACC library on a single system in the cluster are given in the following sections. The instructions assume that the agent's tar file has already been extracted.

Installing the ACC library

Install the ACC library on each system in the cluster that runs an agent that depends on the ACC library.

To install the ACC library

1. Log in as superuser.
2. Download ACC Library.

You can download either the complete Agent Pack tarball or the individual ACCLib tarball from the Symantec Operations Readiness Tools (SORT) site (https://sort.symantec.com/agents).

Note: arch_dist is not applicable to AIX.
3 If you downloaded the complete Agent Pack tarball, navigate to the directory containing the package for the platform running in your environment.

AIX
\(cd1/aix/vcs/application/acc_library/version_library/pkgs \)

HP-UX
\(cd1/hpux/generic/vcs/application/acc_library/version_library/pkgs \)

Linux
\(cd1/linux/generic/vcs/application/acc_library/version_library/rpms \)

Solaris
\(cd1/solaris/dist_arch/vcs/application/acc_library/version_library/pkgs \)

where \(dist_arch \) is sol_sparc or sol_x64.

4 If you downloaded the individual ACCLib tarball, navigate to the pkgs directory (for AIX, HP-UX, and Solaris), or rpms directory (for Linux).

5 Install the package. Enter Yes if asked to confirm overwriting of files in the existing package.

AIX
\# installp -ac -d VRTSacclib.bff VRTSacclib

HP-UX
\# swinstall -s \texttt{pwd} VRTSacclib

Linux
\# rpm -i \\
VRTSacclib-VersionNumber-GA_GENERIC.noarch.rpm

Solaris
\# pkgadd -d VRTSacclib.pkg

Installing the agent in a VCS environment

Install the agent for WebSphere MQ on each node in the cluster.

Note: The agent package VRTSmq6 includes the Veritas agents for WebSphere MQ and WebSphere MQ FTE. So, the following procedure to install the agent for WebSphere MQ installs the agent for WebSphere MQ FTE also.

To install the agent in a VCS environment

 You can download either the complete Agent Pack tar file or an individual agent tar file.

2. Uncompress the file to a temporary location, say /tmp.
3 If you downloaded the complete Agent Pack tar file, navigate to the directory containing the package for the platform running in your environment.

AIX: cd1/aix/vcs/application/webspheremq_agent/
vcs_version/version_agent/pkgs

HP-UX: cd1/hpux/generic/vcs/application/webspheremq_agent/
vcs_version/version_agent/pkgs

Linux: cd1/linux/generic/vcs/application/webspheremq_agent/
vcs_version/version_agent/rpms

Solaris: cd1/solaris/dist_arch/vcs/application/webspheremq_agent/
vcs_version/version_agent/pkgs

where, dist_arch is sol_x64 or sol_sparc

If you downloaded the individual agent tar file, navigate to the pkgs directory (for AIX, HP-UX, and Solaris), or rpms directory (for Linux).

4 Log in as superuser.

5 Install the package.

AIX: # installp -ac -d VRTSmq6.rte.bff VRTSmq6.rte

HP-UX: # swinstall -s 'pwd' VRTSmq6

Linux: # rpm -ihv \VRTSmq6-AgentVersion
-GA_GENERIC.noarch.rpm

Solaris: # pkgadd -d VRTSmq6

6 After installing the agent package, you must import the agent type configuration file. See “Importing the agent types files in a VCS environment” on page 35.

Installing the agent in VCS One environment

You must install the agent for on all the client systems of the VCS One cluster that will host the service group. You can install the agent for using the installagpack program or using the command line interface (CLI).
The installation of the agent packs involves the following phases:

<table>
<thead>
<tr>
<th>Installing the agent packages</th>
<th>See “Installing the agent packages using the installer” on page 22.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding the agent resource type</td>
<td>See “Adding the agent resource type definitions to the Policy Master Server on UNIX” on page 24.</td>
</tr>
<tr>
<td>definitions</td>
<td>See “Adding the agent resource type definitions to the Policy Master Server on Windows” on page 26.</td>
</tr>
</tbody>
</table>

Note: The installagpack program supports only the -addtypes, -rmtypes, -responsefile, and -rsh options. Symantec recommends that you do not use any of the other options from the installagpack command help output.

Installing the agent packages using the installer

You can install the agent packages on one or more client systems of a specific platform type.

Note: To install the VCS One client for managing VMware ESX Servers, download the tar ball for Red Hat Enterprise Linux 4 (RHEL 4) x86 (32-bit) or RHEL 5 x86_64.

Perform the following steps to install the agent packages using the installer

1. On the Policy Master system, download the complete Agent Pack tarball or the individual agent tarball from the Symantec Operations Readiness Tools (SORT) site: https://sort.symantec.com/agents.
2. Uncompress the file to a temporary location, say /tmp.
3 If you downloaded the complete Agent Pack tarball, navigate to the following directory containing the installer for the VCS One agents, for the platform running in your environment:

AIX: `cd1/aix/vcsone/vcsone_version`

HP-UX: `cd1/hpux/hpuxos_version/vcsone/vcsone_version`
 Where `os_version` is the HP-UX version.

Linux: `cd1/linux/dist_arch/vcsone/vcsone_version`
 Where `dist` is the Linux distribution and `arch` is the architecture.

Solaris: `cd1/solaris/dist_arch/vcsone/vcsone_version`
 Where, `dist_arch` is 'sol_sparc' or 'sol_x64'.

4 Enter the following command to start the agent pack installation:

```
# ./installagpack [-rsh]
```

You can use the `-rsh` option if rsh and rcp are used for communication between systems instead of the default ssh and scp. This option requires that systems be preconfigured such that the `rsh` commands between systems execute without prompting for passwords or confirmations.

5 Enter the name of the client systems where you want to install the agents.

6 Choose whether to install all the agents or any specific agent. Follow the installer prompt to specify your option.

7 Review the output as the installation program installs the agent packages.

You can view installation logs in the `/var/VRTS/install/logs` directory.

Installing the agent package using the CLI

You can install the desired agent package using the CLI, on one or more client systems of a specific platform type.

Perform the following steps to install the agent packages using CLI

1 On the Policy Master system, download the complete Agent Pack tarball or the individual agent tarball from the Symantec Operations Readiness Tools (SORT) site: https://sort.symantec.com/agents.

2 Uncompress the file to a temporary location, say `/tmp`.
3. If you downloaded the complete Agent Pack tarball, navigate to the following directory containing the installer for the VCS One agents, for the platform running in your environment:

- **AIX**

 `# cd1/aix/vcsone/vcsone_version/pkgs`

- **HP-UX**

 `# cd1/hpux/hpuxos_version/vcsone/vcsone_version/depot`

- **Linux**

 `# cd1/linux/dist_arch/vcsone/vcsone_version/rpms`

 Where, `dist` is the Linux distribution and `arch` is the architecture

- **Solaris**

 `# cd1/solaris/dist_arch/vcsone/vcsone_version/pkgs`

 Where `dist_arch` is 'sol_sparc' or 'sol_x64'

4. Type the following command on each client system to install the agent. Answer the prompt accordingly:

- **AIX**

 `# installp -ac -d . VRTSmq6.rte`

- **HP-UX**

 `# swinstall -s `pwd` VRTSmq6`

- **Linux**

 `# rpm -ivh VRTSmq6_rpm_filename`

- **Solaris**

 `# pkgadd -d . VRTSmq6`

Adding the agent resource type definitions to the Policy Master Server on UNIX

You must add the agent resource type definitions to the Policy Master database configuration. You can perform this task from any client system in the VCS One cluster.

Note: You must add the agent resource type definitions only one time per platform type.
To add the agent resource types to the policy master database configuration

1. Set up RSH or SSH communications between the client system and the policy master system.

 For information on configuring SSH for remote communication, refer to the Veritas Cluster Server One Installation Guide.

2. Make sure that the PM daemon is running.

 # /opt/VRTSvcsone/bin/haclus -display

 The output should show ClusterState is RUNNING.

3. Access the temporary location where you downloaded the tar ball and depending on the platform type, navigate to the directory containing the agent installer:

 AIX
 cd1/aix/vcsone/vcsone_version

 HP-UX
 cd1/hpux/hpuxos_version/vcsone/vcsone_version
 Where os_version is the HP-UX version.

 Linux
 cd1/linux/dist_arch/vcsone/vcsone_version
 Where dist is the Linux distribution and arch is the architecture.

 Solaris
 cd1/solaris/dist_arch/vcsone/vcsone_version
 Where dist_arch is the sol_sparc or sol_x64.

4. Enter the command to start the agent pack installer for adding resource types to the Policy Master configuration database. Use the -addtypes option:

 # ./installagpack -addtypes

5. When the installer prompts, enter the virtual IP address of the Policy Master.

6. Review the output as the installer verifies communication with the Policy Master system.

7. Choose whether to add the type definitions for all the agents or for specific agents. Follow the installer prompts to add the type definitions.

8. Review the output as the installer adds the agent types to the PM database configuration and copies the appropriate types.xml files to the PM system.

 You can view installation logs in the /var/VRTS/install/logs directory.
Adding the agent resource type definitions to the Policy Master Server on Windows

After you have installed the agent package, you must add the agent resource type definitions to the Policy Master database configuration. You must perform this task from the Policy Master Server.

Note: You must add the agent resource type definitions only one time per platform type.

To add the agent resource types to the Policy Master Server on Windows, perform the following steps from the Policy Master Server command prompt

1. Create a temporary directory on the Policy Master Server, to add the type definitions.

   ```cmd
   C:\> mkdir addtypes_tmp
   ```

2. Change your working directory to the temporary directory created in step 1.

   ```cmd
   C:\> chdir addtypes_tmp
   ```

3. Copy the agent’s type xml file into the temporary directory.

4. Convert this type xml file into type cmd file.

   ```cmd
   C:\addtypes_tmp> haconf -xmltocmd type_xml_filename.xml
   ```

5. Rename the `type_xml_filename.xml.cmd` file to `type_xml_filename.bat`

6. Run the batch file.

   ```cmd
   C:\addtypes_tmp> type_xml_filename.bat >log.txt 2>&1
   ```

7. Review the log.txt file for any errors.

8. Verify whether the type has been successfully added to the Policy Master Server.

   ```cmd
   C:\addtypes_tmp> hatype -list -platform platform_name
   ```

Removing the agent in a VCS environment

You must uninstall the agent for WebSphere MQ from a cluster while the cluster is active.
Warning: The agent package VRTSmq6 includes the Veritas agents for WebSphere MQ and WebSphere MQ FTE. So, the following procedure to remove the agent for WebSphere MQ removes the agent for WebSphere MQ FTE also.

To uninstall the agent in a VCS environment

1 Log in as a superuser.

2 Set the cluster configuration mode to read/write by typing the following command from any node in the cluster:

 # haconf -makerw

3 Remove all WebSphere MQ Queue Manager resources from the cluster. Use the following command to verify that all resources have been removed:

 # hares -list Type=WebSphereMQ6

4 Remove the agent type from the cluster configuration by typing the following command from any node in the cluster:

 # hatype -delete WebSphereMQ6

 Removing the agent's type file from the cluster removes the include statement for the agent from the main.cf file, but the agent's type file is not removed from the cluster configuration directory. You can remove the agent's type file later from the cluster configuration directory.

5 Save these changes. Then set the cluster configuration mode to read-only by typing the following command from any node in the cluster:

 # haconf -dump -makero

6 Use the platform's native software management program to remove the agent for WebSphere MQ from each node in the cluster.

 Execute the following command to uninstall the agent:

 AIX # installp -u VRTSmq6.rte
 HP-UX # swremove VRTSmq6
 Linux # rpm -e VRTSmq6
 Solaris # pkgrm VRTSmq6
Removing the agent in VCS One environment

Removing the agent package involves removing the agent files from each client system where it was installed.

You can remove the packages using the agent pack installer or the command line.

See “Removing the agent packages using the installer” on page 28.

See “Removing the agent package using CLI” on page 29.

After removing the agent packages you can remove the agent type definition from the Policy Master system.

See “Removing the agent type definition from the Policy Master system on UNIX” on page 30.

See “Removing the agent type definition from the Policy Master system on Windows” on page 30.

Removing the agent packages using the installer

You can remove all the agent packages or the desired agent package using the uninstallagpack program.

Note: The uninstallagpack program supports only the -responsefile and -rsh options. Symantec recommends that you do not use any of the other options from the uninstallagpack command help output.

To remove the agent packages from the client systems

1. Freeze the service groups that hosts the application, on the system from which you want to remove the agent package.

   ```
   # hagrp -freeze <groupname>
   ```

2. Stop the agent on all client systems before you remove the agent package from the system.

   ```
   # haagent -stop -notransition <AgentName> -sys <system_name>
   ```

3. Ensure that the agent operations are stopped on all the cluster systems.

   ```
   # haagent -display <AgentName>
   ```
4 Access the temporary location where you downloaded the Agent Pack and navigate to the directory containing the package for the platform running in your environment:

AIX \texttt{cd1/aix/vcsone/vcsone_version}

HP-UX \texttt{cd1/hpux/hpuxos_version/vcsone/vcsone_version}

Where \texttt{os_version} is the HP-UX version.

Linux \texttt{cd1/linux/dist_arch/vcsone/vcsone_version}

Where \texttt{dist} is the Linux distribution and \texttt{arch} is the architecture.

Solaris \texttt{cd1/solaris/dist_arch/vcsone/vcsone_version}

Where \texttt{dist_arch} is the sol_sparc or sol_x64.

5 Start the \texttt{uninstallagpack} program.

\texttt{# ./uninstallagpack [-rsh]}

6 Enter the name of the client systems on which you want to uninstall the agent pack. The names must be separated by spaces.

7 Choose whether to remove all the agent packages or a specific agent package. Follow the installer prompt to remove the agent package.

8 Review the output as the program verifies the agent pack that you installed and removes the agent packages.

You can view logs in the /var/VRTS/install/logs directory.

Removing the agent package using CLI

You can remove a desired agent package using the CLI.

\textbf{Note:} You must remove this agent package from each client system in the cluster.
To remove the agent for from a client system

- Type the following command on each client system to remove the agent. Answer prompts accordingly:

 AIX # installp -u VRTSmq6
 HP-UX # swremove VRTSmq6
 Linux # rpm -e VRTSmq6
 Solaris # pkgrm VRTSmq6

Removing the agent type definition from the Policy Master system on UNIX

After you remove the agent packages, you can remove the agent type definitions for agents you removed, from the Policy Master system.

To remove the agent type definition from the Policy Master system on UNIX

1 Navigate to the following directory on the client system.

 # cd /opt/VRTS/install

2 Run the following command to remove the agent type definition from the Policy Master system:

 # ./installagpack -rmtypes

3 When the installer prompts, enter the virtual IP address of the Policy Master.

4 Choose whether to remove the type definitions for all the agents or for specific agents. Follow the installer prompts to remove the type definitions.

You can view logs in the /var/VRTS/install/logs directory.

Removing the agent type definition from the Policy Master system on Windows

After you remove the agent packages, you can remove the agent type definitions for agents you removed, from the Policy Master system.
To remove the agent type definition from the Policy Master system on Windows

- Run the following command from the Policy Master Server command prompt.

```
C:\> hatype -delete agentname_i.e._typename -platform platformname
```

Removing the ACC library

Perform the following steps to remove the ACC library.

To remove the ACC library

1. Ensure that all agents that use ACC library are removed.
2. Run the following command to remove the ACC library package.

 - **AIX**

     ```
     # installp -u VRTSacclib
     ```
 - **HP-UX**

     ```
     # swremove VRTSacclib
     ```
 - **Linux**

     ```
     # rpm -e VRTSacclib
     ```
 - **Solaris**

     ```
     # pkgrm VRTSacclib
     ```

Upgrading the agent in a VCS environment

Perform the following steps to upgrade the agent with minimal disruption, in a VCS environment.

Note: The agent package VRTSmq6 includes the Veritas agents for WebSphere MQ and WebSphere MQ FTE. Hence, both the agents will be upgraded as the result of upgrading the package. So, perform the following steps for the agent for WebSphere MQ FTE as well.

To upgrade the agent in a VCS environment

1. Persistently freeze the service groups that host the application.

   ```
   # hagrp -freeze GroupName -persistent
   ```
2. Stop the cluster services forcibly.

   ```
   # hastop -all -force
   ```
3. Ensure that the agent operations are stopped on all the nodes.

   ```
   # ps -ef | grep WebSphereMQ6
   ```
4 Uninstall the agent package from all the nodes. Use the platform's native software management program to remove the agent for WebSphere MQ from each node in the cluster.

Execute the following command to uninstall the agent:

AIX # installp -u VRTSmq6.rte
HP-UX # swremove VRTSmq6
Linux # rpm -e VRTSmq6
Solaris # pkgrm VRTSmq6

5 Install the new agent on all the nodes.

See “Installing the agent in a VCS environment” on page 20.

6 Copy the new WebSphereMQ6Types.cf file from the agent's conf directory, to the VCS conf directory /etc/VRTSvcs/conf/config.

<table>
<thead>
<tr>
<th>VCS Version</th>
<th>Platform</th>
<th>File Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCS 4.x</td>
<td>AIX</td>
<td>/etc/VRTSvcs/conf/sample_WebSphereMQ6/WebSphereMQ6Types.cf</td>
</tr>
<tr>
<td></td>
<td>HP-UX</td>
<td>WebSphereMQ6Types.cf</td>
</tr>
<tr>
<td></td>
<td>Linux</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solaris</td>
<td></td>
</tr>
<tr>
<td>VCS 5.x</td>
<td>AIX</td>
<td>/etc/VRTSagents/ha/conf/WebSphereMQ6/WebSphereMQ6Types.cf</td>
</tr>
<tr>
<td></td>
<td>HP-UX</td>
<td>WebSphereMQ6Types.cf</td>
</tr>
<tr>
<td></td>
<td>Linux</td>
<td></td>
</tr>
<tr>
<td>VCS 5.0</td>
<td>Solaris</td>
<td>/etc/VRTSagents/ha/conf/WebSphereMQ6/WebSphereMQ6Types50.cf</td>
</tr>
<tr>
<td></td>
<td>SPARC and x64</td>
<td></td>
</tr>
<tr>
<td>VCS 5.1</td>
<td>Solaris</td>
<td>/etc/VRTSagents/ha/conf/WebSphereMQ6/WebSphereMQ6Types51.cf</td>
</tr>
<tr>
<td></td>
<td>SPARC and x64</td>
<td></td>
</tr>
</tbody>
</table>

Note: If you upgraded the VCS version to VCS 5.1 SP1 and the WebSphere MQ agent version to 5.1.9.0 (or later), and if you had enabled detail monitoring in the previous version, then do the following: Set the value of the LevelTwoMonitorFreq attribute to the same value as that of the SecondLevelMonitor attribute.
7 Check for the changes in the resource values required, if any, due to the new agent types file.

Note: To note the list of changed attributes, compare the new type definition file with the old type definition file.

8 Start the cluster services.

```
# hasstart
```

9 Start the agent on all nodes, if not started.

```
# haagent -start WebSphereMQ6 -sys SystemName
```

10 Unfreeze the service groups once all the resources come to an online steady state.

```
# hagrp -unfreeze GroupName -persistent
```

Upgrading the agent in a VCS One environment

Perform the following steps to upgrade the agent with minimal disruption, in a VCS One environment.

Note: The agent package VRTSmq6 includes the Veritas agents for WebSphere MQ and WebSphere MQ FTE. Hence, both the agents will be upgraded as the result of upgrading the package. So, perform the following steps for the agent for WebSphere MQ FTE as well.

To **upgrade the agent with minimal disruption, in a VCS One environment**

1 Freeze service groups that hosts the application.

```
# hagrp -freeze -propagate GroupName
```

2 Stop the clients forcibly. Execute the following command from the Policy Master.

```
# hastop -client -sys SystemName -force
```

3 Ensure that the agent operations are stopped on all the nodes.

```
# ps -ef | grep WebSphereMQ6
```
4 Uninstall the agent package from all the nodes. Type the following command on each client system to remove the agent. Answer prompts accordingly:

AIX

installp -u VRTSmq6

HP-UX

swremove VRTSmq6

Linux

rpm -e VRTSmq6

Solaris

pkgrm VRTSmq6

5 Install the new agent on all the nodes in the cluster.

See “Installing the agent in VCS One environment” on page 21.

6 Add the agent types, using the installagpack program.

See “Adding the agent resource type definitions to the Policy Master Server on UNIX” on page 24.

7 Check for the changes in the resource values required, if any, due to the new agent types file.

8 Start the clients.

hastart -client

9 Start the agent on all nodes, if not started.

haagent -start WebSphereMQ6 -sys SystemName

10 Unfreeze the service groups.

hagrp -unfreeze -propagate GroupName
Configuring the agent for WebSphere MQ

This chapter includes the following topics:

- About configuring the Veritas agent for WebSphere MQ
- Importing the agent types files in a VCS environment
- WebSphere MQ agent attributes
- Executing a customized monitoring program

About configuring the Veritas agent for WebSphere MQ

After installing the Veritas agent for WebSphere MQ, you must import the agent type configuration file. After importing this file, review the attributes table that describes the resource type and its attributes, and then create and configure WebSphere MQ Queue Manager resources.

To view the sample agent type definition and service groups configuration.

See “About sample configurations for the agent for WebSphere MQ” on page 97.

Importing the agent types files in a VCS environment

To use the agent for WebSphere MQ, you must import the agent types file into the cluster.

You can import the agent types file using the Veritas Cluster Server (VCS) graphical user interface or via the command line interface.
To import the agent types file using the VCS graphical user interface

1. Start the Veritas Cluster Manager and connect to the cluster on which the agent is installed.
2. Click File > Import Types.
3. In the Import Types dialog box, select the following file:

 - VCS 4.x
 - AIX: `/etc/VRTSvcs/conf/sample_WebSphereMQ6/WebSphereMQ6Types.cf`
 - HP-UX
 - Linux
 - Solaris

 - VCS 5.x or later
 - AIX: `/etc/VRTSagents/ha/conf/WebSphereMQ6/WebSphereMQ6Types.cf`
 - HP-UX
 - Linux

 - VCS 5.0
 - Solaris SPARC and x64: `/etc/VRTSagents/ha/conf/WebSphereMQ6/WebSphereMQ6Types50.cf`

 - VCS 5.1 or later
 - Solaris SPARC and x64: `/etc/VRTSagents/ha/conf/WebSphereMQ6/WebSphereMQ6Types51.cf`

4. Click Import.
5. Save the VCS configuration.

 The WebSphere MQ Queue Manager agent type is now imported to the VCS engine.

 You can now create WebSphere MQ Queue Manager resources. For additional information about using the VCS GUI, refer to the Veritas Cluster Server Administrator's Guide.

To import the agent types file using the Veritas Cluster Server command line interface (CLI):

1. Log on to any one of the systems in the cluster as the superuser.
2. Create a temporary directory.
   ```
   # mkdir ./temp
   # cd ./temp
   ```
3. Copy the sample file Types.cf.
WebSphere MQ agent attributes

Refer to the required and optional attributes while configuring the agent for WebSphere MQ Queue Manager.

Table 3-1 shows the required attributes for configuring a WebSphere MQ Queue Manager.
<table>
<thead>
<tr>
<th>Required attributes</th>
<th>Description</th>
</tr>
</thead>
</table>
| CommandServer | Decides whether the monitor function must monitor the command server process. This attribute is applicable for WebSphere version 6.0 and later.
If this attribute is set to 1, the agent for WebSphere MQ monitors the command server process, amqpcsea. If this process faults, the agent for WebSphere MQ restarts the process.
If you set this attribute to 0, the agent for WebSphere MQ does not monitor the amqpcsea process.
Type and dimension: Boolean-scalar
Default: 0
Example: 1 |
| MQUser | UNIX user name of the owner of the WebSphere MQ directories and executables. The agent functions use this name to execute all WebSphere MQ commands. This user name also owns the WebSphere MQ processes.
This user name does not have to be unique within a cluster. The login shell for this user must be Bourne, Korn, or C-shell.
Type and dimension: string-scalar
Default: mqm
Example: mqusr1 |
| MQVer | Version of the WebSphere MQ Queue Manager. Valid values are 5.3, 6.0, and 7.0.
Type and dimension: string-scalar
Default: 6.0
Example: 7.0 |
| QueueManager | Name of the WebSphere MQ Queue Manager that the cluster server manages.
You must uniquely define this attribute for each Queue Manager within the cluster. This attribute also uniquely identifies the processes running for a specific WebSphere MQ Queue Manager.
Type and dimension: string-scalar
Default: ""
Example: venus.queue.manager |
Table 3-1 Required attributes (continued)

<table>
<thead>
<tr>
<th>Required attributes</th>
<th>Description</th>
</tr>
</thead>
</table>
| ResLogLevel | The logging detail performed by the agent for the resource. Valid values are:
| | ERROR: Only logs error messages.
| | WARN: Logs above plus warning messages.
| | INFO: Logs above plus informational messages.
| | TRACE: Logs above plus trace messages. TRACE is very verbose and should only be used during initial configuration or for troubleshooting and diagnostic functions.
| | Type and dimension: string-scalar
| | Default: INFO
| | Example: TRACE |

Table 3-2 Optional attributes

<table>
<thead>
<tr>
<th>Optional attribute</th>
<th>Description</th>
</tr>
</thead>
</table>
| EnvFile | The complete path of the file name to source to set the environment prior to executing WebSphere MQ programs. Symantec recommends storing the file on the shared disk. This ensures that the same file is available on each failover node. Specifying this attribute is optional. The shell environments supported are ksh, sh, and csh.
| | Type and dimension: string-scalar
| | Default: ""
| | Example: /MQ/setEnv.sh |
| MonitorProgram | Absolute path name of an external, user-supplied monitor executable. For information about setting this attribute:
| | See “Executing a customized monitoring program” on page 41.
| | Type and dimension: string-scalar
| | Default: ""
| | Example 1: /ibm/mq/myMonitor.sh
<p>| | Example 2: /ibm/mq/myMonitor.sh arg1 arg2 |</p>
<table>
<thead>
<tr>
<th>Optional attribute</th>
<th>Description</th>
</tr>
</thead>
</table>
| SecondLevelMonitor | Used to enable second-level monitoring. Second-level monitoring is a deeper, more thorough state check of the WebSphere MQ Queue Manager. The numeric value specifies how often the monitoring routines must run. 0 means never run the second-level monitoring routines, 1 means run routines every monitor interval, 2 means run routines every second monitor interval, and so on.
 Note: Exercise caution while setting SecondLevelMonitor to large numbers. For example, if the MonitorInterval is set to 60 seconds and the SecondLevelMonitor is set to 100, then the runmqsc command is executed every 100 minutes, which may not be as often as intended. For maximum flexibility, no upper limit is defined for SecondLevelMonitor.
 Note: The SecondLevelMonitor attribute is applicable to VCS versions earlier than VCS 5.1 SP1 with WebSphereMQ agent versions earlier than 5.1.9.0. From VCS version 5.1 SP1 with WebSphere MQ agent version 5.1.9.0 onwards, the SecondLevelMonitor attribute of the WebSphereMQ agent is deprecated. Instead, a resource type level attribute LevelTwoMonitorFreq should be used to specify the frequency of in-depth monitoring.
 Type and dimension: integer-scalar
 Default: 0
 Example: 1 |
| LevelTwoMonitorFreq | Specifies the frequency at which the agent for this resource type must perform second-level or detailed monitoring. You can also override the value of this attribute at the resource level.
 The value indicates the number of monitor cycles after which the agent will monitor the WebSphere MQ queue manager in detail. For example, the value 5 indicates that the agent will monitor the WebSphere MQ queue manager in detail after every five online monitor intervals.
 Note: This attribute is applicable to VCS version 5.1 SP1 with WebSphere MQ agent version 5.1.9.0 or later. If the VCS version is earlier than VCS 5.1 SP1 and the WebSphere MQ agent version is earlier than 5.1.9.0, the SecondLevelMonitor attribute should be used.
 If you upgraded the VCS version to VCS 5.1 SP1 and the WebSphereMQ agent version to 5.1.9.0 (or later), and if you had enabled detail monitoring in the previous version, then do the following:
 ■ Set the value of the LevelTwoMonitorFreq attribute to the same value as that of the SecondLevelMonitor attribute.
 Type and dimension: integer-scalar
 Default: 0 |
Table 3-2 Optional attributes (continued)

<table>
<thead>
<tr>
<th>Optional attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MonitorListener</td>
<td>Decides whether the monitor and clean function must monitor and clean the MQ listener process. If this attribute is set to 1, the agent for WebSphere MQ monitors and cleans the MQ listener process (runmqlsr), as part of mandatory processes. If you set this attribute to 0 (default value), the agent for WebSphere MQ does not monitor the runmqlsr process. Note: If you enable MonitorListener, you should not configure separate resource for listener process as this process is already monitored and cleaned as part of WebSphereMQ resource. Type and dimension: boolean-scaler Default: 0 Example: 1</td>
</tr>
<tr>
<td>MQInstallationPath</td>
<td>When more than one copy of WebSphere MQ is installed on a system, each Queue Manager is associated with a particular installation. Specify the location of the WebSphere MQ installation to which this Queue Manager is associated. For WebSphere MQ versions earlier than 7.1, the default installation path is /opt/mqm or /usr/mqm for AIX platforms. Specify a custom installation path for WebSphere MQ 7.1 or later. If you change the installation that is associated with a Queue Manager, ensure that you update this attribute to specify the newly-associated installation path. Example: /opt/customLocation Default: " "</td>
</tr>
</tbody>
</table>
The first-level process check indicates that the WebSphere MQ Queue Manager instance is online.

The second-level monitor check indicates that the WebSphere MQ Queue Manager instance is online.

The second-level monitor check is deferred for this monitoring cycle.

The monitor function interprets the utility exit code as follows:

- 110 or 0: WebSphere MQ Queue Manager server instance is online
- 100 or 1: WebSphere MQ Queue Manager server instance is offline
- 99: WebSphere MQ Queue Manager server instance is unknown
- Any other value: WebSphere MQ Queue Manager server instance is unknown

To ensure that the customized utility is always available to the agent, Symantec recommends storing the file in a shared directory that is available on an online node.
Configuring the service group for WebSphere MQ using the Symantec High Availability Configuration wizard

This chapter includes the following topics:

- Installing the agent for WebSphere MQ in VCS 6.0.2
- Typical VCS cluster configuration in a virtual environment
- About configuring application monitoring using the Symantec High Availability solution for VMware
- Getting ready to configure VCS service groups using the wizard
- Before configuring application monitoring
- Launching the Symantec High Availability Configuration wizard
- Configuring the WebSphere MQ Queue Manager for high availability
- Understanding service group configurations
- Understanding configuration scenarios
- Symantec High Availability Configuration wizard limitations
- Troubleshooting
Sample configurations

Installing the agent for WebSphere MQ in VCS 6.0.2

You can install the agent for WebSphere MQ in the following ways:

- Using the product installer.
 Use this method to install the agent for WebSphere MQ in a physical or virtual environment.
 For more details, refer to the product installation and upgrade guide.

- Using the command line interface (CLI).
 Use this method to install the agent for WebSphere MQ in a physical or virtual environment.
 For more details, refer to the product installation and upgrade guide.

- Using the VMware vSphere client integrated menu.
 Use this method to install the agent for WebSphere MQ in a virtual environment.
 For more details, refer to the *Symantec High Availability Solutions Guide for VMware*.

Typical VCS cluster configuration in a virtual environment

A typical VCS cluster configuration for WebSphere MQ Queue Manager, in a VMware virtual environment involves two or more virtual machines. The virtual machine on which the application is active, accesses a non-shared VMware VMDK or RDM disk that resides on a VMware datastore.

The virtual machines involved in the VCS cluster configuration may belong to a single ESX host or could reside on separate ESX hosts. If the virtual machines reside on separate ESX hosts, the datastore on which the VMware VMDK or RDM disks (on which the application data is stored) reside must be accessible to each of these ESX hosts.

The application binaries are installed on the virtual machines and the data files are installed on the VMware disk drive. The VCS agents monitor the application components and services, and the storage and network components that the application uses.
During a failover, the VCS storage agents move the VMware disks to the new system. The VCS network agents bring the network components online, and the application specific agents then start application services on the new system.

About configuring application monitoring using the Symantec High Availability solution for VMware

Consider the following before you proceed:

- You can configure application monitoring on a virtual machine using the Symantec High Availability Configuration wizard for VMware. The wizard is launched when you click **Configure application for high availability** on the Symantec High Availability tab in VMware vSphere Client.
Apart from the Symantec High Availability Configuration wizard, you can also configure application monitoring using the Veritas Cluster Server (VCS) commands. For more information, refer to the *Veritas Cluster Server Administrator's Guide*.

Symantec recommends that you first configure application monitoring using the wizard before using VCS commands to add additional components or modify the existing configuration. Apart from configuring application availability, the wizard also sets up the other components required for successful application monitoring.

You must not suspend a system if an application is currently online on that machine. If you suspend a system, VCS moves the disks along with the application to another system. Later, when you try to restore the suspended system, VMware does not allow the operation because the disks that were attached before the system was suspended are no longer with the system. To suspend a virtual machine, ensure that the application being monitored is not online on that system.

Note: For details about deploying, configuring, and administering the Symantec High Availability solution, refer to the *Symantec High Availability Solutions Guide for VMware*.

Getting ready to configure VCS service groups using the wizard

Ensure that you complete the following tasks before configuring application monitoring on a virtual machine:

- Install the VMware vSphere Client.
- Install and enable VMwareTools on the virtual machine, where you want to monitor applications with VCS. Install a version that is compatible with the VMware ESX server.
- Install Symantec High Availability console on a Windows system in your data center and register the Symantec High Availability plug-in with the vCenter server.
- Assign Configure Application Monitoring (Admin) privileges to the logged-on user on the virtual machine where you want to configure application monitoring.
- Install Veritas Cluster Server.
Install the application and the associated components that you want to monitor on the virtual machine.

If you have configured a firewall, ensure that your firewall settings allow access to ports used by the Symantec High Availability installer, wizards, and services. Refer to the Symantec High Availability Solutions Guide for VMware for a list of ports and services used.

Before configuring application monitoring

Note the following prerequisites before configuring application monitoring on a virtual machine:

- The Symantec High Availability Configuration wizard discovers the disks which are attached and the storage which is currently mounted. Ensure that the shared storage used by the application is mounted before you invoke the wizard.

- For all the WebSphere MQ Queue Managers that you want to configure, the DataPath, LogPath, and InstallationPath directories must be accessible from the node from where you invoke the Symantec High Availability Configuration wizard.

- The latest VRTSmq6 and VRTSacclib packages must be installed on the node on which you want to monitor WebSphere MQ Queue Managers.

- You must not restore a snapshot on a virtual machine where an application is currently online, if the snapshot was taken when the application was offline on that virtual machine. Doing this may cause an unwanted failover. This also applies in the reverse scenario; you should not restore a snapshot where the application was online on a virtual machine, where the application is currently offline. This may lead to a misconfiguration where the application is online on multiple systems simultaneously.

- While creating a VCS cluster in a virtual environment, you must configure the cluster communication link over a public network in addition to private adapters. The link using the public adapter should be assigned as a low-priority link. This helps in case the private network adapters fail, leading to a condition where the systems are unable to connect to each other, consider that the other system has faulted, and then try to gain access to the disks, thereby leading to an application fault.

- You must not select teamed network adapters for cluster communication. If your configuration contains teamed network adapters, the wizard groups them as "NIC Group #N" where "N" is a number assigned to the teamed network adapters. A teamed network adapter is a logical NIC, formed by grouping
several physical NICs together. All NICs in a team have an identical MAC address, due to which you may experience the following issues:

- SSO configuration failure.
- The wizard may fail to discover the specified network adapters.
- The wizard may fail to discover/validate the specified system name.

- Verify that the boot sequence of the virtual machine is such that the boot disk (OS hard disk) is placed before the removable disks. If the sequence places the removable disks before the boot disk, the virtual machine may not reboot after an application failover. The reboot may halt with an "OS not found" error. This issue occurs because during the application failover the removable disks are detached from the current virtual machine and are attached on the failover target system.

- Verify that the disks used by the application that you want to monitor are attached to non-shared controllers so that they can be deported from the system and imported to another system.

- If multiple types of SCSI controllers are attached to the virtual machines, then storage dependencies of the application cannot be determined and configured.

- The term 'shared storage' refers to the removable disks attached to the virtual machine. It does not refer to disks attached to the shared controllers of the virtual machine.

- If you want to configure the storage dependencies of the application through the wizard, the LVM volumes or VxVM volumes used by the application should not be mounted on more than one mount point path.

- The host name of the system must be resolvable through the DNS server or, locally, using `/etc/hosts` file entries.

Launching the Symantec High Availability Configuration wizard

You can launch the Symantec High Availability Configuration wizard from:

- VMware vSphere Client: See To launch the wizard from the VMware vSphere Client.

- A browser window: See To launch the wizard from a browser window.

You must launch the Symantec High Availability Configuration wizard from the system where the disk residing on the shared datastore is attached.
To launch the wizard from the VMware vSphere Client

1. Launch the VMware vSphere Client and connect to the VMware vCenter Server that hosts the virtual machine.

2. From the vSphere Client’s Inventory view in the left pane, select the virtual machine where you want to configure application monitoring.

3. Skip this step if you have already configured single sign-on during guest installation.

 Select the Symantec High Availability tab and in the Symantec High Availability View page, specify the credentials of a user account that has administrative privileges on the virtual machine and click Configure.

 The Symantec High Availability console sets up a permanent authentication for the user account on that virtual machine.

4. Depending on your setup, use one of the following options to launch the wizard:

 - If you have not configured a cluster, click the Configure application for high availability link.
 - If you have already configured a cluster, click Actions > Configure application for high availability or the Configure application for high availability link.
 - If you have already configured a cluster and configured an application for monitoring, click Actions > Configure application for high availability.

To launch the wizard from a browser window

1. Open a browser window and enter the following URL:

 <VMNameorIP> is the virtual machine name or IP address of the system on which you want to configure application monitoring.

2. In the Authentication dialog box, enter the username and password of the user who has administrative privileges.

3. Depending on your setup, use one of the following options to launch the wizard:

 - If you have not configured a cluster, click the Configure application for high availability link.
 - If you have already configured a cluster, click Actions > Configure application for high availability or the Configure application for high availability link.
If you have already configured a cluster and configured an application for monitoring, click **Actions > Configure application for high availability**.

Configuring the WebSphere MQ Queue Manager for high availability

Perform the following steps to configure the WebSphere MQ Queue Manager for high availability on a virtual machine.

To configure the WebSphere MQ Queue Manager for high availability

2. Review the information on the Welcome panel and click **Next**.

3. On the Application Selection panel, select **WebSphere MQ** from the Supported Applications list and click **Next**.

 You can use the Search box to search for the WebSphere MQ application.

4. On the Application Inputs panel, from the Queue Manager list, select the WebSphere MQ queue manager instances that you want to monitor.

5. Skip this step if you do not want to specify environment file for the queue manager.

 In the **Environment File** field, enter the path where the environment file is located. The environment file must be accessible on the node from which you invoke the wizard.

6. Skip this step if you do not want to monitor the related queue manager listener.

 If you want to monitor the related queue manager listener, check the **Monitor Queue Manager Listener** check box and select one of the following options to proceed:

 - Select the **Along with Queue Manager** radio button to monitor the queue manager listeners along with WebSphere MQ Queue Manager instances. The **MonitorListener** attribute of the WebSphere MQ resource is enabled.

 - Select the **Independent of Queue Manager** radio button to monitor the queue manager listeners separately from queue manager instances. In the **Listener Port** field, enter the listener port number. A separate resource for the listener is created using the Application agent.

7. Click **Next**.
8 On the Configuration Inputs panel, use the Edit icon to specify the user name and password of the systems for VCS cluster operations.

Cluster systems lists the systems included in the cluster configuration. **Application failover targets** lists the systems to which the application can fail over. Move the required systems to the Application failover targets list. Use the up and down arrow keys to define the priority order of the failover systems. The local system is selected by default for both, the cluster operations and as a failover target.

9 Click **Next**.

10 Skip this step if you do not want to add more systems to your cluster.

To add a system to the VCS cluster, click **Add System**. In the Add System dialog box, specify the following details of the system that you want to add to the VCS cluster and click **OK**.

- **System Name or IP address**: Specify the name or IP address of the system that you want to add to the VCS cluster.
- **User name**: Specify the user account for the system. Typically, this is the root user. The root user should have the necessary privileges.
- **Password**: Specify the password for the user account mentioned.
- **Use the specified user account on all systems**: Select to use the specified user account on all the cluster systems that have the same user name and password.

11 If you are configuring a cluster and if you want to modify the security settings for the cluster, click **Advanced Settings**. In the Advanced settings dialog box, specify the following details and click **OK**.

- **Use Single Sign-on**: Select to configure single sign-on using VCS Authentication Service for cluster communication. This option is enabled by default.
- **Use VCS user privileges**: Select to configure a user with administrative privileges to the cluster. Specify the username and password and click **OK**.

Note: The **Advanced Settings** link is not visible if the cluster is already created.
12 Skip this step if the cluster is already configured. By default, the links are configured over Ethernet.

On the Network Details panel, select the type of network protocol to configure the VCS cluster network links and then specify the adapters for network communication.

The wizard configures the VCS cluster communication links using these adapters. You must select a minimum of two adapters per system.

Select **Use MAC address for cluster communication (LLT over Ethernet)** or **Use IP address for cluster communication (LLT over UDP)**, depending on the IP protocol that you want to use and then specify the required details to configure the VCS cluster communication network links. You must specify these details for each cluster system.

- To configure LLT over Ethernet, select the adapter for each network communication link. You must select a different network adapter for each communication link.
- To configure LLT over UDP, select the type of IP protocol and then specify the required details for each communication link.

Depending on the IP protocol, specify the following:

<table>
<thead>
<tr>
<th>Network Adapter</th>
<th>Select a network adapter for the communication links. You must select a different network adapter for each communication link.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>Displays the IP address.</td>
</tr>
<tr>
<td>Port</td>
<td>Specify a unique port number for each link. For IPv4 and IPv6, the port range is from 49152 to 65535. A specified port for a link is used for all the cluster systems on that link.</td>
</tr>
<tr>
<td>Subnet mask (IPv4)</td>
<td>Displays the subnet mask details.</td>
</tr>
<tr>
<td>Prefix (IPv6)</td>
<td>Displays the prefix details.</td>
</tr>
</tbody>
</table>

By default, one of the links is configured as a low-priority link on a public network interface. The second link is configured as a high-priority link. To change a high-priority link to a low-priority link, click **Modify**. In the **Modify low-priority link dialog box**, select the link and click **OK**.
Note: Symantec recommends that you configure one of the links on a public network interface. You can assign the link on the public network interface as a low-priority link for minimal VCS cluster communication over the link.

13 Skip this step if the application does not use virtual IP address.

In the Virtual Network Details panel, specify the IP protocol and virtual IP address for the application.

Depending on the IP protocol, specify the following:

- Virtual IP address: Specify a unique virtual IP address.
- Subnet Mask (IPv4): Specify the subnet mask details.
- Prefix (IPv6): Select the prefix from the drop-down list.
- Network Adapter: Select the network adapter that will host the virtual IP.

If you want to add another virtual IP address for your application, click Add virtual IP address.

If you select multiple instances for the same virtual IP address, those instances are configured in the same service group.

14 Click Next.
15 Skip this step if you did not select mount points.

On the Target ESX Details panel, specify all the ESX hosts to which the virtual machines can fail over. Each ESX host must be able to access the required shared datastores that contain visible disks. Enter the administrative user account details for each ESX host and click **Next**.

To specify the ESX hosts, click **Add ESX Host** and in the Add ESX Host dialog box, specify the following details:

- **ESX hostname or IP address**: Specify the target ESX hostname or IP address.
 - The virtual machines can fail over on this ESX host during vMotion. All the additional ESX hosts should have access to the datastore on which the disks used by the application reside.

- **User name**: Specify a user account for the ESX host. The user account must have administrator privileges on the specified ESX host.

- **Password**: Specify the password for the user account provided in the User name text box.

The wizard validates the user account and the storage details on the specified ESX hosts.

16 On the Summary panel, review the VCS cluster configuration summary and then click **Next** to proceed with the configuration.

If the network contains multiple clusters, the wizard verifies the cluster ID with the IDs assigned to all the accessible clusters in the network. The wizard does not validate the assigned ID with the clusters that are not accessible during the validation. Symantec recommends you to validate the uniqueness of the assigned ID in the existing network. If the assigned ID is not unique or if you want to modify the cluster name or cluster ID, click **Edit**. In the Edit Cluster Details dialog box, modify the details as necessary and click **OK**.
17 On the Implementation panel, the wizard creates the VCS cluster, configures the application for monitoring, and creates cluster communication links. The wizard displays the status of each task. After all the tasks are complete, click **Next**.

If the configuration task fails, click **View Logs** to check the details of the failure. Rectify the cause of the failure and run the wizard again to configure application monitoring.

18 On the Finish panel, click **Finish** to complete the wizard workflow.

This completes the application monitoring configuration.

If the application status shows as not running, click **Start** to start the configured components on the system.

Understanding service group configurations

One or more WebSphere MQ Queue Manager instances can be discovered on a virtual machine. These WebSphere MQ Queue Manager instances may or may not share the same mount points, disks, disk groups, volume, or virtual IP address. The WebSphere MQ Queue Manager listeners that do not share any of these forms a separate service group.

Resource dependency

Following are the resource dependencies:

- When the listeners are monitored using the Independent of Queue Manager option, the listener resources associated with a WebSphere MQ Queue Manager instance depends on the WebSphere MQ resource.

- Listener resources also depend on the configured IP resources.

- The WebSphere MQ resource depends on mount point resources which are discovered for that particular WebSphere MQ instance. The wizard checks if the DataPath, LogPath, and InstallationPath for the queue manager are on the shared storage.

- Mount point resources depend on either LVM (logical volume) or VxVM volume.
 - VxVM volume depends on DiskGroup resources.
 - LVM depends on LVM volume group.

- DiskGroup and LVM volume group resources depend on the shared disks which are configured as VMwareDisks resources.
Service group dependency

The Symantec High Availability Configuration wizard does not create service group dependency for WebSphere MQ.

Infrastructure service groups

As part of configuring the application, the Symantec High Availability Configuration wizard:

■ Configures application specific service groups and resources.
■ Configures the VCS infrastructure service group (VCSInfraSG).

VCSInfraSG includes a resource called VCSNotifySinkRes. The type of this resource is Process. VCSNotifySinkRes configures and administers the notify_sink process on the guest. The notify_sink process sends the details about service groups and its attributes to the Symantec High Availability Console. This information is used for reporting purpose and is displayed on the Dashboard.

Note: VCSInfraSG is an internal service group. You must not add or delete resources from this service group.

The following are the VCSInfraSG notes:

■ Before you configure the application for monitoring, ensure that SSO is configured between the Symantec High Availability Console and the guest. If SSO is not configured, VCSInfraSG fails to come online.
■ If VCSInfraSG or VCSNotifySinkRes faults, ensure that SSO is configured between the Symantec High Availability Console and the guest. Clear the faults and bring the resource online again.
■ VCSInfraSG or VCSNotifySinkRes must not be taken offline because it affects the information displayed on the Dashboard.

Understanding configuration scenarios

You can configure WebSphere MQ Queue Manager instances in different ways using the Symantec High Availability Configuration wizard.
Table 4-1 WebSphere MQ Queue Manager configurations

<table>
<thead>
<tr>
<th>Configuration Type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring a single instance/multiple instances in VCS</td>
<td>See Configuring a single instance/multiple instances in VCS</td>
</tr>
<tr>
<td>Configuring multiple WebSphere MQ Queue Manager instances in VCS using multiple runs of the wizard</td>
<td>See Configuring multiple WebSphere MQ Queue Manager instances in VCS using multiple runs of the wizard</td>
</tr>
<tr>
<td>Configuring multiple applications</td>
<td>See Configuring multiple applications</td>
</tr>
</tbody>
</table>

Configuring a single instance/multiple instances in VCS

Use the Symantec High Availability Configuration wizard to configure one or more WebSphere MQ Queue Manager instances in a single run.

In the Application Inputs panel, select the WebSphere MQ Queue Manager instances from the Queue Manager list. For each instance, you can specify the following optional parameters:

- Environment file
- Listener related to the specific Queue Manager

Configuring multiple WebSphere MQ Queue Manager instances in VCS using multiple runs of the wizard

If you are configuring the first WebSphere MQ Queue Manager instance on a machine where more than one Queue Manager instance is present, configure it by following the steps in the Configuring a single instance/multiple instances in VCS section.

The Symantec High Availability Configuration wizard will not allow you to configure the next WebSphere MQ Queue Manager instance if any of the mandatory dependent resources such as mount point, disk group, and disk are already configured in VCS.

- If existing resources are part of the WebSphere MQ service group, unconfigure the existing service group and then reconfigure the new instance along with the old instances/listeners which were part of the pre-existing service group.

Note: All the queue managers that share the mount point for the queue manager DataPath, LogPath, or InstallationPath must be configured in a single run of the wizard.
If existing resources are part of an application service group other than WebSphere MQ, the wizard does not support configuring multiple applications. You can configure these applications through CLI or Veritas Operations Manager.

Configuring multiple applications

If you run the Symantec High Availability Configuration wizard multiple times, you can configure multiple applications of different types.

If you are configuring the first application on a machine where more than one application is running, you can configure it by following the steps in the Configuring a single instance/multiple instances in VCS section.

The Symantec High Availability Configuration wizard will not allow you to configure the next application if any of the mandatory dependent resources such as mount point, disk group, and disk are already configured in VCS.

Symantec High Availability Configuration wizard limitations

Following are the Symantec High Availability Configuration wizard limitations:

- If the WebSphere MQ Queue Manager instance is already configured, that instance is not shown in the list of queue managers and it will not be available for configuration. In such a scenario, no error message will be displayed. For example, if there are two WebSphere MQ Queue Manager instances running on the system with the same InstallationPath and assuming that the first instance is configured, if you run the wizard to configure the next instance, the following error message is displayed:

 The wizard has failed to discover WebSphere MQ Queue Manager on the system

 However, if the WebSphere MQ queue managers do not share any resources (storage and network), you can configure the WebSphere MQ Queue Manager.

- The wizard supports discovery of only LVM or VxVM type of storage.

- The wizard will not discover the disks used by the application if the controllers attached to the virtual machine are of different type. To correctly discover and identify the association of mount points to the virtual disks, all the controllers attached to the virtual machine must be of same type.

- The wizard will not discover disks which are attached to the virtual machine in shared mode.
Troubleshooting

This section lists common troubleshooting scenarios that you may encounter while or after configuring application monitoring.

Symantec High Availability Configuration wizard displays blank panels

The Symantec High Availability Configuration wizard may fail to display the wizard panels. The window may appear blank.

Workaround:
Verify that the Symantec ApplicationHAService is running on the Symantec High Availability Console host and then launch the wizard again.

The Symantec High Availability Configuration wizard displays the "hadiscover is not recognized as an internal or external command" error

While configuring application monitoring the Symantec High Availability Configuration wizard may display the "hadiscover is not recognized as an internal or external command" error, after you click Next on the Application Selection panel.

This issue occurs if you launch the wizard from a system where you have reinstalled the Symantec High Availability guest components.

Workaround:
Close the wizard, restart the Veritas Storage Foundation Messaging Service, and then re-run the wizard.

Running the ‘hastop –all’ command detaches virtual disks

The hastop –all command takes offline all the components and component groups of a configured application, and then stops the VCS cluster. In the process, the command detaches the virtual disks from the VCS cluster nodes.

Workaround:
If you want to stop the VCS cluster (and not the applications running on cluster nodes), instead of the hastop –all command, use the following command:

```
hastop -all -force
```

This command stops the cluster without affecting the virtual disks attached to the VCS cluster nodes.
Log files

The log files are stored in the virtual machine on which you configured application monitoring.

The healthview_A.log file contains the steps performed by the back-end to configure the application. To check the file, you must access:

/var/VRTSvcs/log/healthview_A.log

The WebSphereMQ6_A.log file contains the actions performed by the agent. To check the file, you must access:

/var/VRTSvcs/log/WebSphereMQ6_A.log

The engine_A.log file contains the actions performed by the VCS cluster. To check the file, you must access:

/var/VRTSvcs/log/engine_A.log

Sample configurations

The sample configurations includes description for typical service groups that are configured using the Symantec High Availability Configuration wizard.

Sample VCS configuration file for single WebSphere MQ Queue Manager instance (VxVM)

Figure 4-2 shows a typical service group configured to monitor the state of a WebSphere MQ Queue Manager instance. In this example, the WebSphere MQ Queue Manager instance uses VxVM volume as storage.
Review the sample configuration with a resource of type WebSphere MQ Queue Manager that is configured as follows in main.cf file.

```plaintext
class Cluster_32625 (  
    SecureClus = 1  
)  

system rhel5u8mq1 (  
)  
```

```
include "OracleASMTypes.cf"
include "types.cf"
include "Db2udbTypes.cf"
include "OracleTypes.cf"
include "SybaseTypes.cf"
include "WebSphereMQ6Types.cf"
```
group MQ_1 {
 SystemList = { rhel5u8mq1 = 0 }
 UserAssoc = { Type = WebSphereMQ,
 Name = "WebSphere MQ: Queue manager" }
}

DiskGroup dg_QM1Log {
 DiskGroup = QM1Log
}

DiskGroup dg_QM1Qmgrs {
 DiskGroup = QM1Qmgrs
}

Mount mnt_QM71_2 {
 MountPoint = "/usr/queuManager/qmgrs/QM71"
 BlockDevice = "/dev/vx/dsk/QM1Qmgrs/QM1Qmgrs_Vol"
 FSType = vxfs
 MountOpt = "rw,delaylog,largefiles,ioerror=mwdisable"
 FsckOpt = "-y"
}

Mount mnt_QM71_3 {
 MountPoint = "/usr/queuManager/logs/QM71"
 BlockDevice = "/dev/vx/dsk/QM1Log/QM1Log_Vol"
 FSType = vxfs
 MountOpt = "rw,delaylog,largefiles,ioerror=mwdisable"
 FsckOpt = "-y"
}

VMwareDisks VMwareDisk_1 {
 ESXDetails = {
 "vcs1x658.domain.com" = "root=HVNtKVkPHnINjNK"
 }
 DiskPaths = {
 "6000C293-f663-218a-7ac7-16175cde2daa:[rhel5MQ1]
QM1qmgrs.vmdk" = "0:1"
 }
 VMRegisterWait = 5
}

VMwareDisks VMwareDisk_2 {
 ESXDetails = {
 "vcs1x658.domain.com" = "root=HVNtKVkPHnINjNK"
 }
}
DiskPaths = {
 "6000C290-f3f0-77ff-49b1-74ef05b87f8b:[rhel5MQ1] QM1log.vmdk" = "0:2"
}
VMRegisterWait = 5
)

Volume vol_QM1Log_Vol_QM1Log (
 DiskGroup = QM1Log
 Volume = QM1Log_Vol
)

Volume vol_QM1Qmgrs_Vol_QM1Qmgrs (
 DiskGroup = QM1Qmgrs
 Volume = QM1Qmgrs_Vol
)

WebsphereMQ6 QM71 (
 QueueManager = QM71
 MQVer = "7.1"
 MonitorListener = 1
 MQInstallationPath = "/opt/MQ"
)

QM71 requires mnt_QM71_2
QM71 requires mnt_QM71_3
dg_QM1Log requires VMwareDisk_2
dg_QM1Qmgrs requires VMwareDisk_1
mnt_QM71_2 requires vol_QM1Qmgrs_Vol_QM1Qmgrs
mnt_QM71_3 requires vol_QM1Log_Vol_QM1Log
vol_QM1Log_Vol_QM1Log requires dg_QM1Log
vol_QM1Qmgrs_Vol_QM1Qmgrs requires dg_QM1Qmgrs

// resource dependency tree
//
// group MQ_1
// {
// WebSphereMQ6 QM71
// {
// Mount mnt_QM71_2
// {
// Volume vol_QM1Qmgrs_Vol_QM1Qmgrs
// }
// Mount mnt_QM71_3
// {
// Volume vol_QM1Qmgrs_Vol_QM1Qmgrs
// }

Sample configurations
Sample configurations

```
// DiskGroup dg_QM1Qmgr
// {
//   VMwareDisks VMwareDisk_1
// }
//
// Mount mnt_QM71_3
// {
//   Volume vol_QM1Log_Vol_QM1Log
//   {
//     DiskGroup dg_QM1Log
//     {
//       VMwareDisks VMwareDisk_2
//     }
//   }
// }
//

group VCSInfraSG {
    SystemList = { rhel5u8mq1 = 0 }
    UserAssoc = { Type = "vcs internal",
                 Name = "VCS Infrastructure service group" }
    Parallel = 1
    AutoStartList = { rhel5u8mq1 }
    OnlineRetryLimit = 5
}

Process VCSNotifySinkRes {
    PathName = "/opt/VRTSvcs/portal/admin/notify_sink"
}

// resource dependency tree
//
// group VCSInfraSG
// {
//   Process VCSNotifySinkRes
// }
```
Sample VCS configuration file for single WebSphere MQ Queue Manager instance (LVM)

Figure 4-3 shows a typical service group configured to monitor the state of a WebSphere MQ Queue Manager instance. In this example, the WebSphere MQ Queue Manager instance uses LVM volume as storage.

Figure 4-3 Dependency graph for single WebSphere MQ Queue Manager instance (LVM)

Review the sample configuration with a resource of type WebSphere MQ Queue Manager that is configured as follows in main.cf file.
include "OracleASMTypes.cf"
include "types.cf"
include "Db2udbTypes.cf"
include "OracleTypes.cf"
include "SybaseTypes.cf"
include "WebSphereMQ6Types.cf"

cluster Cluster_3175 (
 SecureClus = 1
)

system sles11sp2mq1 (
)

group MQ_1 (
 SystemList = { sles11sp2mq1 = 0 }
 UserAssoc = {
 Type = WebSphereMQ,
 Name = "WebSphere MQ: Queue manager"
 }
)

Application QM1_Listener_res (
 User = mqm
 StartProgram = "/opt/mqm/bin/runmqlsr -t tcp -I 10.209.70.205 -p 1490 -m QM1 &"
 StopProgram = "/opt/mqm/bin/endmqlsr -m QM1"
 MonitorProcesses = {
 "/opt/mqm/bin/runmqlsr -t tcp -I 10.209.70.205 -p 1490 -m QM1"
 }
)

IP IP_10-209-70-205 (
 Device @sles11sp2mq1 = eth0
 Address = "10.209.70.205"
 NetMask = "255.255.252.0"
)

LVMLogicalVolume lvol_QM1QmgrVol_QM1Qmgrs (
 LogicalVolume = QM1QmgrVol
 VolumeGroup = QM1Qmgrs
)

LVMLogicalVolume lvol_QM1TmpVol_QM1Tmp (
 LogicalVolume = QM1TmpVol
 VolumeGroup = QM1Tmp
)
LVMVolumeGroup volg_QM1Qmgrs (
 VolumeGroup = QM1Qmgrs
)

LVMVolumeGroup volg_QM1Tmp (
 VolumeGroup = QM1Tmp
)

Mount mnt_QM1_2 (
 MountPoint = "/var/mqm/qmgrs/QM1"
 BlockDevice = "/dev/mapper/QM1Qmgrs-QM1QmgrVol"
 FSType = ext3
 MountOpt = rw
 FsckOpt = "-y"
)

Mount mnt_QM1_3 (
 MountPoint = "/var/mqm/log/QM1"
 BlockDevice = "/dev/mapper/QM1Tmp-QM1TmpVol"
 FSType = ext3
 MountOpt = rw
 FsckOpt = "-y"
)

Proxy NICProxy_10-209-70-205 (
 TargetResName @sles11sp2mq1 = NIC_sles11sp2mq1_eth0
)

VMwareDisks VMwareDisk_1 (
 ESXDetails = {
 "vcslx658.domain.com" = "root=drjPgrGldJejFjg"
 }
 DiskPaths = {
 "6000C29f-3b70-a4e1-9933-0b882e6fd051:[SAPMQ]
 slesQM2Tmp.vmdk" = "0:1"
 }
 VMRegisterWait = 5
)

VMwareDisks VMwareDisk_2 (
 ESXDetails = {
 "vcslx658.domain.com" = "root=drjPgrGldJejFjg"
 }
 DiskPaths = {

Sample configurations
"6000C29c-cfd8-3914-fe12-a5b7461fbd9e:[SAPMQ]
slesQM2Qmgrs.vmdk" = "0:2" }
VMRegisterWait = 5
)

WebSphereMQ6 QM1 {
 QueueManager = QM1
 MQVer = "7.0"
}

IP_10-209-70-205 requires NICProxy_10-209-70-205
QM1 requires mnt_QM1_2
QM1 requires mnt_QM1_3
QM1_Listener_res requires IP_10-209-70-205
QM1_Listener_res requires QM1
lvol_QM1QmgrVol_QM1Qmgrs requires volg_QM1Qmgrs
lvol_QM1TmpVol_QM1Tmp requires volg_QM1Tmp
mnt_QM1_2 requires lvol_QM1QmgrVol_QM1Qmgrs
mnt_QM1_3 requires lvol_QM1TmpVol_QM1Tmp
volg_QM1Qmgrs requires VMwareDisk_2
volg_QM1Tmp requires VMwareDisk_1

// resource dependency tree
//
// group MQ_1
// {
// Application QM1_Listener_res
// {
// IP IP_10-209-70-205
// {
// Proxy NICProxy_10-209-70-205
// }
// WebSphereMQ6 QM1
// {
// Mount mnt_QM1_2
// {
// LVMLogicalVolume lvol_QM1QmgrVol_QM1Qmgrs
// {
// LVMVolumeGroup volg_QM1Qmgrs
// }
// VMwareDisks VMwareDisk_2
// }
// }
// }
//}
group VCSInfraSG {
 SystemList = { sles11sp2mq1 = 0 }
 UserAssoc = { Type = "vcs internal",
 Name = "VCS Infrastructure service group" }
 Parallel = 1
 AutoStartList = { sles11sp2mq1 }
 OnlineRetryLimit = 5
}

Process VCSNotifySinkRes {
 PathName = "/opt/VRTSvcs/portal/admin/notify_sink"
}

// resource dependency tree
//
// group VCSInfraSG
// {
// Process VCSNotifySinkRes
// }

group sles11sp2mq1_NIC_SG {
 SystemList = { sles11sp2mq1 = 0 }
 UserAssoc = { Type = "vcs internal",
 Name = "NIC service group" }
}
Configuring the service group for WebSphere MQ using the Symantec High Availability Configuration wizard

Sample configurations

```c
NIC NIC_sles11sp2mq1_eth0 {
    Device@sles11sp2mq1 = eth0
    Mii = 0
}

Phantom Phantom_NIC_SGsles11sp2mq1 {
    ...
}

// resource dependency tree
//
// group sles11sp2mq1_NIC_SG
// {
//    NIC NIC_sles11sp2mq1_eth0
//    Phantom Phantom_NIC_SGsles11sp2mq1
//    ...
// }
```
Enabling the agent for WebSphere MQ to support IMF

This chapter includes the following topics:

- About Intelligent Monitoring Framework
- How the agent supports intelligent resource monitoring
- Agent functions for the IMF functionality
- Attributes that enable IMF
- Before you enable the agent to support IMF
- Enabling the agent to support IMF
- Disabling intelligent resource monitoring
- Sample IMF configurations

About Intelligent Monitoring Framework

With intelligent monitoring framework (IMF), VCS supports intelligent resource monitoring in addition to the poll-based monitoring. Poll-based monitoring polls the resources periodically whereas intelligent monitoring performs asynchronous monitoring. You can enable or disable the intelligent resource monitoring functionality of the WebSphere MQ agent.
VCS process and mount-based agents use the Asynchronous Monitoring Framework (AMF) kernel driver that provides asynchronous event notifications to the agents that are enabled for Intelligent Monitoring Framework (IMF).

You can enable the WebSphere MQ agent for IMF, provided the following software versions are installed:

- Veritas Cluster Server (VCS) 5.1 SP1 or later
- Veritas High Availability agent for WebSphere MQ version 5.1.9.0 or later

See the Veritas Cluster Server Administrator’s Guide for more information about IMF notification module functions and administering the AMF kernel driver.

Benefits of IMF

IMF offers the following benefits:

- Performance
 Enhances performance by reducing the monitoring of each resource at a default of 60 seconds for online resources, and 300 seconds for offline resources. IMF enables the agent to monitor a large number of resources with a minimal effect on performance.

- Faster detection
 Asynchronous notifications would detect a change in the resource state as soon as it happens. Immediate notification enables the agent to take action at the time of the event.

How the agent supports intelligent resource monitoring

With intelligent monitoring framework (IMF), VCS supports intelligent resource monitoring in addition to the poll-based monitoring. Poll-based monitoring polls the resources periodically whereas intelligent monitoring performs asynchronous monitoring.

When an IMF-enabled agent starts up, the agent initializes the asynchronous monitoring framework (AMF) kernel driver. After the resource is in a steady state, the agent registers with the AMF kernel driver, the details of the resource that are required to monitor the resource. For example, the agent for WebSphere MQ registers the PIDs of the WebSphere MQ Queue Manager processes with the AMF kernel driver. The agent’s imf_getnotification function waits for any resource state changes. When the AMF kernel driver module notifies the imf_getnotification function about a resource state change, the agent framework runs the monitor
agent function to ascertain the state of that resource. The agent notifies the state change to VCS, which then takes appropriate action.

See the *Veritas Cluster Server Administrator’s Guide* for more information.

Agent functions for the IMF functionality

If the WebSphere MQ agent is enabled for IMF support, the agent supports the following functions, in addition to the functions mentioned in WebSphere MQ agent functions.

imf_init

This function initializes the WebSphere MQ agent to interface with the AMF kernel driver, which is the IMF notification module for the agent for WebSphere MQ. This function runs when the agent starts up.

imf_getnotification

This function gets notifications about resource state changes. This function runs after the agent initializes with the AMF kernel module. This function continuously waits for notification and takes action on the resource upon notification.

imf_register

This function registers or unregisters resource entities with the AMF kernel module. This function runs for each resource after the resource goes into a steady state—online or offline.

Attributes that enable IMF

If the agent for WebSphere MQ is enabled for IMF support, the agent uses the following type-level attributes in addition to the attributes described in WebSphere MQ agent attributes.

IMF

This resource type-level attribute determines whether the WebSphere MQ agent must perform intelligent resource monitoring. You can also override the value of this attribute at the resource level.

This attribute includes the following keys:
Mode

Define this attribute to enable or disable intelligent resource monitoring. Valid values are as follows:

- **0**—Does not perform intelligent resource monitoring
- **1**—Performs intelligent resource monitoring for offline resources and performs poll-based monitoring for online resources
- **2**—Performs intelligent resource monitoring for online resources and performs poll-based monitoring for offline resources
- **3**—Performs intelligent resource monitoring for both online and offline resources.

Note: The agent for WebSphere MQ supports intelligent resource monitoring for online resources only. Hence, Mode should be set to either 0 or 2.

Type and dimension: integer-association

Default values: 0 for VCS 5.1 SP1, 3 for VCS 6.0 and later.

MonitorFreq

This key value specifies the frequency at which the agent invokes the monitor agent function. The value of this key is an integer.

Default: 1

You can set this key to a non-zero value for cases where the agent requires to perform both poll-based and intelligent resource monitoring.

If the value is 0, the agent does not perform poll-based process check monitoring.

After the resource registers with the AMF kernel driver, the agent calls the monitor agent function as follows:

- After every \((\text{MonitorFreq} \times \text{MonitorInterval})\) number of seconds for online resources
- After every \((\text{MonitorFreq} \times \text{OfflineMonitorInterval})\) number of seconds for offline resources

RegisterRetryLimit

If you enable intelligent resource monitoring, the agent invokes the `imf_register` agent function to register the resource with the AMF kernel driver.
The value of the RegisterRetryLimit key determines the number of times the agent must retry registration for a resource. If the agent cannot register the resource within the limit that is specified, then intelligent monitoring is disabled until the resource state changes or the value of the Mode key changes.

Default: 3.

IMFRegList

An ordered list of attributes whose values are registered with the IMF notification module.

Type and dimension: string-vector

Default: No default value

Note: The attribute values can be overridden at the resource level.

Before you enable the agent to support IMF

Before you enable the WebSphere MQ agent to support IMF, ensure that the AMF kernel module is loaded and AMF is configured. For details, see the ‘Administering the AMF kernel driver’ section of the *Veritas Cluster Server Administrator's Guide*. For details about the commands you can use to configure AMF, use the `amfconfig -h` command.

Enabling the agent to support IMF

In order to enable the WebSphere MQ agent to support IMF, you must make the following configuration changes to the attributes of the agent:

- **AgentFile:** Set the AgentFile attribute to `Script51Agent`
- **IMF Mode:** Set the IMF Mode attribute to 2
- **IMFRegList:** Update the IMFRegList attribute

The following sections provide more information on the commands you can use to make these configuration changes, depending on whether VCS is in a running state or not.
Note: If you have upgraded VCS from an earlier version to version 5.1 SP1 or later, and you already have WebSphere MQ agent 5.1.9.0 installed, ensure that you run the following commands to create appropriate symbolic links:

```
# cd /opt/VRTSagents/ha/bin/WebSphereMQ6
# ln -s /opt/VRTSamf/imf/imf_getnotification imf_getnotification
# ln -s /opt/VRTSagents/ha/bin/WebSphereMQ6/monitor imf_register
```

If VCS is in a running state

To enable the WebSphere MQ resource for IMF when VCS is in a running state:

1. Make the VCS configuration writable.
   ```
   # haconf -makerw
   ```

2. Run the following command to update the AgentFile attribute.
   ```
   # hatype -modify WebSphereMQ6 AgentFile
   /opt/VRTSvcs/bin/Script51Agent
   ```

3. For VCS version 6.0 or later, run the following commands to add the IMF attributes:
   ```
   # haattr -add -static WebSphereMQ6Type IMF -integer -assoc Mode 0 \ MonitorFreq 1 RegisterRetryLimit 3
   # haattr -add -static WebSphereMQ6Type IMFRegList -string -vector
   ```

Note: Execute these commands only once after you first enable IMF support for the agent.
4 Run the following command to update the IMF attribute.

```bash
# hatype -modify WebSphereMQ6 IMF Mode num MonitorFreq num RegisterRetryLimit num
```

For example, to enable intelligent monitoring of online resources, with the MonitorFreq key set to 5, and the RegisterRetryLimit key is set to 3, run the following command:

```bash
# hatype -modify WebSphereMQ6 IMF Mode 2 MonitorFreq 5 \ RegisterRetryLimit 3
```

Note: The valid values for the Mode key of the IMF attribute are 0 (disabled) and 2 (online monitoring).

5 Run the following command to update the IMFRegList attribute:

```bash
# hatype -modify WebSphereMQ6 IMFRegList QueueManager MQUser MQVer
```

6 Save the VCS configuration.

```bash
# haconf -dump -makero
```

7 If the WebSphere MQ agent is running, restart the agent.

For information on the commands you can use to restart the agent, see **Restarting the agent**.

Restarting the agent

To restart the agent:

1 Run the following command to stop the agent forcefully:

```bash
# haagent -stop WebSphereMQ6 -force -sys <system>
```

Note: Stopping the agent forcefully eliminates the need to take the resource offline.

2 Run the following command to start the agent:

```bash
# haagent -start WebSphereMQ6 -sys <system>.
```
If VCS is not in a running state

To change the WebSphereMQ6 type definition file when VCS is not in a running state:

1. Update the AgentFile attribute.

   ```
   static str AgentFile = "/opt/VRTSvcs/bin/Script51Agent"
   ```

2. Update the IMF attribute.

 The valid values for the Mode key of the IMF attribute are 0 (disabled) and 2 (online monitoring).

   ```
   static int IMF{} = { Mode=num, MonitorFreq=num,
   RegisterRetryLimit=num }
   ```

 For example, to update the IMF attribute such that the Mode key is set to 2, the MonitorFreq key is set to 5, and the RegisterRetryLimit key is set to 3:

   ```
   static int IMF{} = { Mode=2, MonitorFreq=5, RegisterRetryLimit=3 }
   ```

3. Update the IMFRegList attribute.

   ```
   static str IMFRegList[] = { QueueManager, MQUser, MQVer }
   ```

Disabling intelligent resource monitoring

To disable intelligent resource monitoring

1. Make the VCS configuration writable.

   ```
   # haconf -makerw
   ```

2. To disable intelligent resource monitoring for all the resources of a certain type, run the following command:

   ```
   # hatype -modify WebSphereMQ6 IMF -update Mode 0
   ```

3. To disable intelligent resource monitoring for a specific resource, run the following command:

   ```
   # hares -override resource_name IMF
   # hares -modify resource_name IMF -update Mode 0
   ```

4. Save the VCS configuration.

   ```
   # haconf -dump -makero
   ```
Sample IMF configurations

An example of a type definition file for a WebSphere MQ agent that is IMF-enabled is as follows.

In this example, the IMF-related attributes are set to the following values:

- **AgentFile** = `/opt/VRTSvcs/bin/Script51Agent`
- **IMF[]** = `{ Mode=2, MonitorFreq=5, RegisterRetryLimit=3 }`
- **IMFRegList[]** = `{ QueueManager, MQUser, MQVer }`
- **LevelTwoMonitorFreq** = 25

```java
type WebSphereMQ6 {
    static str AgentDirectory = "/opt/VRTSagents/ha/bin/WebSphereMQ6"
    static str AgentFile = "/opt/VRTSvcs/bin/Script51Agent"
    static int LevelTwoMonitorFreq = 25
    static str ArgList[] = { ResLogLevel, State, IState, QueueManager,
        CommandServer, MQUser, MQVer, EnvFile,
        SecondLevelMonitor, MonitorProgram,
        MonitorListener }
    static boolean AEPTimeout = 1
    static int IMF[] = { Mode=2, MonitorFreq=5, RegisterRetryLimit=3 }}
    static str IMFRegList[] = { QueueManager, MQUser, MQVer }
    str ResLogLevel = INFO
    str QueueManager
    boolean CommandServer = 0
    str MQUser = mqm
    str MQVer = "6.0"
    str EnvFile
    int SecondLevelMonitor
    str MonitorProgram
    boolean MonitorListener = 0
}
```

A sample resource configuration from the `/etc/VRTSvcs/conf/config/main.cf` file is as follows:

```bash
WebSphereMQ6 Queue1 {
    QueueManager = Queue1
    CommandServer = 1
    MQVer = "7.0"
}```
MonitorListener = 1
)

Sample IMF configurations
Configuring the service groups for WebSphere MQ using the CLI

This chapter includes the following topics:

■ Before configuring the service groups for WebSphere MQ
■ Configuring service groups for WebSphere MQ Queue Managers

Before configuring the service groups for WebSphere MQ

Before you configure the WebSphere MQ Queue Manager service group, you must:

■ Verify that VCS is installed and configured on all nodes in the cluster where you will configure the service group. Refer to the Veritas Cluster Server Installation Guide for more information.

■ Verify that the Veritas agent for WebSphere MQ is installed on all nodes in the cluster. See “Installing the agent in a VCS environment” on page 20.

Configuring service groups for WebSphere MQ Queue Managers

You can cluster WebSphere MQ Queue Managers in a clustered environment, and you can use the Veritas agent for WebSphere MQ to manage these components.
Configuring a WebSphere MQ resource

In a clustered environment, you can configure a WebSphere MQ resource using the following methods:

- **Active-passive configuration**
  The active-passive configuration is an easier method of configuration. This method limits the configuration to one service group running a WebSphere MQ Queue Manager on a particular node at one time.

- **Active-active configuration**
  The active-active configuration allows multiple service groups running WebSphere MQ Queue Managers on a particular node simultaneously. This configuration incurs additional complexity in configuration and maintenance.

**Active-passive configuration**

Use this configuration only where you need WebSphere MQ Queue Managers in a clustered environment.

On the node that hosts the service group, perform the following steps:

**To configure a WebSphere MQ Queue Manager using active-passive configuration**

1. Ensure that a file system is located on a shared disk.
   This file system must be in the same service group in which the WebSphere MQ is to be created.

2. If required, copy the WebSphere MQ default files from the local copy in to the /var/mqm directory. This directory is a WebSphere MQ configuration item that is not changeable.

3. Mount the file system at the /var/mqm directory.

4. Use the WebSphere MQ tools to create the WebSphere MQ Queue Manager. Refer to the WebSphere MQ documentation for details.

5. Define this WebSphere MQ Queue Manager as a resource in the service group.
   See “Sample service group configurations” on page 101.

You can now create additional Queue Managers on the same node on which the service group is currently online.

Ensure that you always define the additional Queue Manager as a cluster server resource in the same service group where other Queue Managers are defined.
Active-active configuration

In an active-active configuration, you can configure each WebSphere MQ Queue Manager in a separate service group and each Queue Manager can fail over independent of each other.

This configuration is complex to implement and maintain. However, this configuration provides the flexibility that some applications may require. This method also supports many-to-one and many-to-many cluster configurations.

On the node that hosts the service group to which the WebSphere MQ Queue Manager belongs, perform the following steps:

**To configure a WebSphere MQ Queue Manager using active-active configuration**

1. Use the WebSphere MQ tools to create the WebSphere MQ Queue Managers that you require. Refer to the WebSphere MQ documentation for details.

2. Create a file system for each WebSphere MQ on the shared disk. Add each file system to a separate service group.

3. Move the log directory from the /var/mqm/log/QueueManager directory to a directory on each file system. Ensure that you copy the sub-directories also.

   If a period occurs in the name of the Queue Manager, replace the period with !. For example, if the queue name is venus.veritas and the filesystem is /mq/venus, execute the following commands:

   ```
 # mkdir /mq/venus/log
 # cp -rp /var/mqm/log/venus!veritas /mq/venus/log
   ```

4. Remove the QueueManager directory:

   ```
 # rm -r /var/mqm/log/venus!veritas
   ```

5. Create a symbolical link between the /var/mqm/log/QueueManager directory and the directory on the file system on which you copied the data in step 3. Ensure that the permissions for all the copied files, directories, and symbolic links are the same as the original files and are owned by "mqm:mqm".

   For example:

   ```
 # ln -s /mq/venus/log /var/mqm/log/venus!veritas

 # chown mqm:mqm /var/mqm/log/venus!veritas
   ```
Move the qmgr directory from the `/var/mqm/qmgr/QueueManager` directory to a directory on the shared file system that you created in step 1.

Ensure that you copy the sub-directories also.

If a period occurs in the name of the Queue Manager, replace the period with !. For example, if the queue name is `venus.veritas` and the filesystem is `/mq/venus`, execute the following commands:

```
mkdir /mq/venus/qmgrs
cp -rp /var/mqm/qmgrs/venus!veritas /mq/venus/qmgrs
```

Remove the QueueManager directory:

```
rm -r /var/mqm/qmgrs/venus!veritas
```

Create a symbolical link between the `/var/mqm/qmgrs/QueueManager` directory and the directory on the file system on which you copied the data in step 6.

Ensure that the permissions for all the copied files, directories, and symbolic links are the same as the original files and are owned by "mqm:mqm".

For example:

```
ln -s /mq/venus/qmgrs /var/mqm/qmgrs/venus!veritas
chown mqm:mqm /var/mqm/qmgrs/venus!veritas
```

Define the Queue Managers as resources in separate service groups.

See Figure A-1 on page 102.

The WebSphere MQ can run on many nodes in the cluster. These nodes are defined in the SystemList attribute. On all such nodes, perform the following steps:

- Create a symbolical link between the `/var/mqm/log/QueueManager` and the directory in which the logs were copied in step 3.

- Create a symbolical link between the `/var/mqm/qmgr/QueueManager` and the directory in which the qmgr directory was copied in step 6.

- Add the following lines at the end of the `/var/mqm/mqs.ini` file using a text editor:

  ```
 QueueManager:
 Name=QueueManager
  ```
If all these nodes are to handle the queues, then copy the /var/mqm/mqs.ini file from the first node to all other nodes.
Follow these steps whenever you want to add new WebSphere MQ Queue Managers in the cluster.

Configuring a WebSphere MQ listener

A WebSphere MQ Queue Manager uses a Listener to listen for requests on a specific IP address. You can configure a Listener resource in the cluster using a bundled application agent. An example listener resource configuration is shown as follows. In this example, the virtual IP address is set to 1.2.3.4 and the Queue Manager name is venus.veritas.

See “WebSphere MQ agent attributes” on page 37.

You can enable the MonitorListener attribute, if the listener is configured to start automatically when the queue manager starts.

You can enable the MonitorListener attribute, to start Listener when WebSphere MQ resource is online.

You can replace these values with the virtual IP address and Queue Manager name defined within the cluster.

Application was4WSMQ_listen
{
    User = mqm
    StartProgram = "/opt/mqm/bin/runmqlsr -t tcp -i 1.2.3.4 -m venus.veritas &"
    StopProgram = "/opt/mqm/bin/endmqlsr -m venus.veritas"
    MonitorProcesses = ("/opt/mqm/bin/runmqlsr -t tcp -i 1.2.3.4 -m venus.veritas")
}

For details about the WebSphere MQ listener, refer to the WebSphere MQ documentation.
Configuring the service groups for WebSphere MQ using the CLI

Configuring service groups for WebSphere MQ Queue Managers
Troubleshooting the agent for WebSphere MQ

This chapter includes the following topics:

- Using the correct software and operating system versions
- Meeting prerequisites
- Configuring WebSphere MQ Queue Manager resources
- Starting the WebSphere MQ Queue Manager instance outside a cluster
- Monitoring WebSphere MQ Queue Manager processes
- Stopping WebSphere MQ Queue Manager processes forcefully
- Reviewing error log files
- Troubleshooting the configuration for IMF

Using the correct software and operating system versions

Ensure that no issues arise due to incorrect software and operating system versions.

For information on the software versions that the agent for WebSphere MQ supports, see the Symantec Operations Readiness Tools (SORT) site: https://sort.symantec.com/agents.
Meeting prerequisites

Before installing the agent for WebSphere MQ, double check that you meet the prerequisites.

For example, you must install the ACC library on VCS before installing the agent for WebSphere MQ.

See “Before you install the Veritas agent for WebSphere MQ” on page 17.

Note: For information about the prerequisites for IMF and for other IMF-related troubleshooting information: See “Troubleshooting the configuration for IMF” on page 92.

Configuring WebSphere MQ Queue Manager resources

Before using WebSphere MQ Queue Manager resources, ensure that you configure the resources properly. For a list of attributes used to configure all WebSphere MQ Queue Manager resources, refer to the agent attributes.

Starting the WebSphere MQ Queue Manager instance outside a cluster

If you face problems while working with a resource, you must disable the resource within the cluster framework. A disabled resource is not under the control of the cluster framework, and so you can test the WebSphere MQ Queue Manager instance independent of the cluster framework. Refer to the cluster documentation for information about disabling a resource.

You can then restart the WebSphere MQ Queue Manager instance outside the cluster framework.

Note: Use the same parameters that the resource attributes define within the cluster framework while restarting the resource outside the cluster framework.

A sample procedure to start a WebSphere MQ instance outside the cluster framework, is illustrated as follows.
To restart the WebSphere MQ Queue Manager outside the framework

1. Log in to the WebSphere MQ Queue Manager as an MQUser.

   ```bash
 # su - MQUser
   ```

2. Start the WebSphere MQ Queue Manager.

   ```bash
 # strmqm QueueManagerName
   ```

If the WebSphere MQ Queue Manager works properly outside the cluster framework, you can then attempt to implement the Queue Manager within the cluster framework.

**Monitoring WebSphere MQ Queue Manager processes**

The agent for WebSphere MQ monitors the following processes:

**MQ 5.3**

- `amqhasmx X_QUEUE_MANAGER_X( |\$)``
- `amqzllip0 .*-m *X_QUEUE_MANAGER_X( |\$)``
- `amqzlaa0 .*-m *X_QUEUE_MANAGER_X( |\$)``
- `amqrrmfa .*-m *X_QUEUE_MANAGER_X( |\$)``
- `runmqchi .*-m *X_QUEUE_MANAGER_X( |\$)``
- `amqzdmaa .*-m *X_QUEUE_MANAGER_X( |\$)``
- `amqzfuma .*-m *X_QUEUE_MANAGER_X( |\$)``
- `amqzxma0 .*-m *X_QUEUE_MANAGER_X( |\$)``

**MQ 6.0 and later**

- `amqrrmfa .*-m *X_QUEUE_MANAGER_X( |\$)``
- `runmqchi .*-m *X_QUEUE_MANAGER_X( |\$)``
- `amqzdmaa .*-m *X_QUEUE_MANAGER_X( |\$)``
- `amqzfuma .*-m *X_QUEUE_MANAGER_X( |\$)``
- `amqzxma0 .*-m *X_QUEUE_MANAGER_X( |\$)``
- `amqzmuc0 .*-m *X_QUEUE_MANAGER_X( |\$)``
- `amqzmur0 .*-m *X_QUEUE_MANAGER_X( |\$)``

**Stopping WebSphere MQ Queue Manager processes forcefully**

As per IBM recommendations, when an attempt to gracefully stop the Queue Manager fails, the agent for WebSphere MQ kills the processes in the following order:
MQ 5.3

"amqhasmx X_QUEUE_MANAGER_X( \s")",
"amqzllp0 .*-m *X_QUEUE_MANAGER_X( \s")",
"amqzlalaa .*-m *X_QUEUE_MANAGER_X( \s")",
"amqzlmfa .*-m *X_QUEUE_MANAGER_X( \s")",
"runmqchi .*-m *X_QUEUE_MANAGER_X( \s")",
"amqzdmaa .*-m *X_QUEUE_MANAGER_X( \s")",
"amqzfuna .*-m *X_QUEUE_MANAGER_X( \s")",
"amqzxm0 .*-m *X_QUEUE_MANAGER_X( \s")",
"amqpfceaa .*-m *X_QUEUE_MANAGER_X( \s")",
"amqaharmx .*-m *X_QUEUE_MANAGER_X( \s")",
"runmqlsr .*-m *X_QUEUE_MANAGER_X( \s")",

MQ 6.0

"amqzmuc0 .*-m *X_QUEUE_MANAGER_X( \s")",
"amqzxm0 .*-m *X_QUEUE_MANAGER_X( \s")",
"amqztfuna .*-m *X_QUEUE_MANAGER_X( \s")",
"amqzlalaa .*-m *X_QUEUE_MANAGER_X( \s")",
"amqzds0 .*-m *X_QUEUE_MANAGER_X( \s")",
"amqzmgr0 .*-m *X_QUEUE_MANAGER_X( \s")",
"amqzmur0 .*-m *X_QUEUE_MANAGER_X( \s")",
"amqrmppa .*-m *X_QUEUE_MANAGER_X( \s")",
"amqzrmfa .*-m *X_QUEUE_MANAGER_X( \s")",
"amqzdmaa .*-m *X_QUEUE_MANAGER_X( \s")",
"amqpcsea *X_QUEUE_MANAGER_X( \s")",
"amqhasmx X_QUEUE_MANAGER_X( \s")",
"amqzllp0 .*-m *X_QUEUE_MANAGER_X( \s")",
"runmqchi .*-m *X_QUEUE_MANAGER_X( \s")",
"amqaharmx .*-m *X_QUEUE_MANAGER_X( \s")",
"amqfgpub .*-m *X_QUEUE_MANAGER_X( \s")",
"amqfxcba .*-m *X_QUEUE_MANAGER_X( \s")",
"amqcrsta .*-m *X_QUEUE_MANAGER_X( \s")",
"runmqsc *X_QUEUE_MANAGER_X( \s")",
"runmqlsr .*-m *X_QUEUE_MANAGER_X( \s")",  

Troubleshooting the agent for WebSphere MQ

Stopping WebSphere MQ Queue Manager processes forcefully
MQ 7.0
"amqzmuc0 .*-m *X_QUEUE_MANAGER_X( |\$)",
"amqzxma0 .*-m *X_QUEUE_MANAGER_X( |\$)",
"amqzfuma .*-m *X_QUEUE_MANAGER_X( |\$)",
"amqzlaa0 .*-m *X_QUEUE_MANAGER_X( |\$)",
"amqzlisa0 .*-m *X_QUEUE_MANAGER_X( |\$)",
"amqzmufo .*-m *X_QUEUE_MANAGER_X( |\$)",
"amqzmur0 .*-m *X_QUEUE_MANAGER_X( |\$)",
"amqzmgr0 .*-m *X_QUEUE_MANAGER_X( |\$)",
"amqfqpub .*-m *X_QUEUE_MANAGER_X( |\$)",
"amqfcxba .*-m *X_QUEUE_MANAGER_X( |\$)",
"amqrmpaa .*-m *X_QUEUE_MANAGER_X( |\$)",
"amqrcrsta .*-m *X_QUEUE_MANAGER_X( |\$)",
"amqcrs6b .*-m *X_QUEUE_MANAGER_X( |\$)",
"amqrmmfa .*-m *X_QUEUE_MANAGER_X( |\$)",
"amqzdmaa .*-m *X_QUEUE_MANAGER_X( |\$)",
"amqpckeaa *X_QUEUE_MANAGER_X( |\$)",
"runmqtrm .*-m *X_QUEUE_MANAGER_X( |\$)",
"runmqdiq *X_QUEUE_MANAGER_X( |\$)",
"runmqchi .*-m *X_QUEUE_MANAGER_X( |\$)",
"runmqqlsr .*-m *X_QUEUE_MANAGER_X( |\$)",
"amqxsav . m *X_QUEUE_MANAGER_X( |\$)",
"amqztrcn .*-m *X_QUEUE_MANAGER_X( |\$)",
"runmqsc *X_QUEUE_MANAGER_X( |\$)",

Reviewing error log files

If you face problems while using WebSphere MQ Queue Manager or the agent for WebSphere MQ, use the log files described in this section to investigate the problems.

Using WebSphere MQ log files

If a WebSphere MQ Queue Manager is facing problems, you can access the server log files to further diagnose the problem. The WebSphere MQ Queue Manager log files are located in the <Queue Manager Home>/qmgrs/<Queue Manager Name>/errors directory.

Reviewing cluster log files

In case of problems while using the agent for WebSphere MQ, you can also access the engine log file for more information about a particular resource.

The VCS engine log file is at /var/VRTSvcs/log/engine_A.log.
The VCS One engine log file is at /var/VRTSvcsone/log/engine_A.log.
The VCS One client log file is at /var/VRTSvcsone/log/vcsoneclientd_A.log.

Using trace level logging

The ResLogLevel attribute controls the level of logging that is written in a cluster log file for each WebSphere MQ Queue Manager resource. You can set this attribute to TRACE, which enables very detailed and verbose logging.

If you set ResLogLevel to TRACE, a very high volume of messages are produced. Symantec recommends that you localize the ResLogLevel attribute for a particular resource.

To localize ResLogLevel attribute for a resource

1. Identify the resource for which you want to enable detailed logging.
2. Localize the ResLogLevel attribute for the identified resource:
   
   # hares -local Resource_Name ResLogLevel

3. Set the ResLogLevel attribute to TRACE for the identified resource:
   
   # hares -modify Resource_Name ResLogLevel TRACE -sys SysA

4. Note the time before you begin to operate the identified resource.
5. Test the identified resource. The function reproduces the problem that you are attempting to diagnose.
6. Note the time when the problem is reproduced.
7. Set the ResLogLevel attribute back to INFO for the identified resource:
   
   # hares -modify Resource_Name ResLogLevel INFO -sys SysA

8. Review the contents of the log file. Use the time noted in Step 4 and Step 6 to diagnose the problem.

   You can also contact Symantec support for more help.

Troubleshooting the configuration for IMF

If you face problems with the IMF configuration or functionality, consider the following:

- Ensure that the following attributes are configured with appropriate values.
- AgentFile
- IMF
- IMFRegList

If IMFRegList is not configured correctly, the WebSphere MQ resources that have been registered for IMF get unregistered every time the monitor function is run.

- If you have configured the required attributes to enable the WebSphere MQ agent for IMF, but the agent is still not IMF-enabled, restart the agent. The imf_init function runs only when the agent starts up, so when you restart the agent, imf_init runs and initializes the WebSphere MQ agent to interface with the AMF kernel driver.

- You can run the following command to check the value of the MonitorMethod attribute and to verify that a resource is registered for IMF.

  ```
 # hares -value resource MonitorMethod system
  ```

  The MonitorMethod attribute specifies the monitoring method that the agent uses to monitor the resource:

  - Traditional—Poll-based resource monitoring
  - IMF—Intelligent resource monitoring

- You can use the `amfstat` to see a list of registered PIDs for a WebSphereMQ6 resource.

  Following is a sample output for the Queue Manager ‘testQM’.

  The `ps –ef` command output shows the Queue Manager process.

  ```
 # ps –ef | grep -i testQM
 mqm 10085 10075 1 13:38:30 ? 0:00 amqzlaa0 -mTestQM
 -fip0
 mqm 10080 10075 1 13:38:28 ? 0:00 amqzmur0 -m TestQM
 mqm 10083 10075 1 13:38:28 ? 0:00 /opt/mqm/bin/
 amqzdmaa -m TestQM
 mqm 10076 10075 1 13:38:27 ? 0:00 /opt/mqm/bin/
 amqzfuma -m TestQM
 mqm 10088 10081 1 13:38:30 ? 0:00 amqfgpub -mTestQM
 mqm 10086 10084 0 13:38:30 ? 0:00 /opt/mqm/bin/
 runmqchi -m TestQM
 -q SYSTEM.CHANNEL.
 INITQ -r
 mqm 10089 10088 1 13:38:30 ? 0:00 amqfcxb -m TestQM
 mqm 10077 10075 1 13:38:27 ? 0:00 amqzmuc0 -m TestQM
 mqm 10082 10075 0 13:38:28 ? 0:00 /opt/mqm/bin/
  ```
The `amfstat` command shows the Queue Manager PIDs monitored by the WebSphereMQ agent.

```bash
amfstat
AMF Status Report

Registered Reapers (3):
=========================
 RID PID MONITOR TRIGG REAPER
 163 16417 7 0 WebSphereMQ6

Process ONLINE Monitors (7):
============================
 RID R_RID PID GROUP
 165 163 10082 TestQM
 166 163 10086 TestQM
 167 163 10083 TestQM
 168 163 10076 TestQM
 169 163 10075 TestQM
 170 163 10077 TestQM
 171 163 10080 TestQM
```

- Run the following command to set the ResLogLevel attribute to TRACE. When you set ResLogLevel to TRACE, the agent logs messages in the WebSphereMQ6_A.log file.
  ```bash
 # hares -modify ResourceName ResLogLevel TRACE
  ```

- Run the following command to view the content of the AMF in-memory trace buffer.
  ```bash
 # amfconfig -p dbglog
  ```
If you have upgraded to VCS version 5.1 SP1, from an earlier VCS version, and if you already have WebSphere MQ agent version 5.1.9.0 installed, ensure that the appropriate symbolic links have been created. You can run the following commands to create appropriate symbolic links:

- `# cd /opt/VRTSagents/ha/bin/WebSphereMQ6`
- `# ln -s /opt/VRTSamf/imf/imf_getnotification imf_getnotification`
- `# ln -s /opt/VRTSagents/ha/bin/WebSphereMQ6/monitor imf_register`

**Known issues**

This release of the agent for WebSphere MQ has the following known issues:

**Problem**

An error message might appear when you run the `hares -offline` command to take a resource offline.

**Description**

When a resource is taken offline, it is unregistered from the AMF module. However, the `imf_register` function attempts to unregister the resource again.

This results in the following error message from the engine log.

```
VCS ERROR V-16-2-13710 Resource(Queue1) - imf_register entry point failed with exit code(1)
```

The following message is logged in the agent log:

```
V-16-55000-10209 Commandline [/opt/VRTSamf/bin/amfregister -u -rWebSphereMQ6 -g Queue1] provided a non-zero exit code --This does not necessarily indicate a problem ... (Perl's OS error variable prior to the command-pipe close was [], and after the close was []) VCSagentFW:messageEngineLog:[AMF amfregisterNOTICEIgnoring the group unregister request; group named "Queue1" not found]
```

**Workaround**

It is safe to ignore this error message.
Troubleshooting the agent for WebSphere MQ
Troubleshooting the configuration for IMF
Sample Configurations

This appendix includes the following topics:

- About sample configurations for the agent for WebSphere MQ
- Sample agent type definition for WebSphere MQ
- Sample configuration when IMF is enabled
- Sample configuration in a VCS environment
- Sample configuration in a VCS One environment
- Sample service group configurations

About sample configurations for the agent for WebSphere MQ

The sample configuration graphically depicts the resource types, resources, and resource dependencies within the service group. Review these dependencies carefully before configuring the agent for WebSphere MQ. For more information about these resource types, see the Veritas Cluster Server Bundled Agents Reference Guide.

Sample agent type definition for WebSphere MQ

After importing the agent types into the cluster, if you save the configuration on your system disk using the \texttt{haconf -dump} command, you can find the WebSphereMQ6Types.cf file in the \texttt{/etc/VRTSvcs/conf/config} cluster configuration directory.

Examples of agent type definition files for different versions of VCS are as follows:
For VCS 4.x

type WebSphereMQ6
{
    static str ArgList[] = { ResLogLevel, State, IState, QueueManager, CommandServer, MQUser, MQVer, EnvFile, SecondLevelMonitor, MonitorProgram, MonitorListener }

    str ResLogLevel = INFO
    str QueueManager
    boolean CommandServer = 1
    str MQUser = mqm
    str MQVer = "6.0"
    str EnvFile
    int SecondLevelMonitor
    str MonitorProgram
    boolean MonitorListener = 0
}

For VCS 5.x and VCS 6.0

type WebSphereMQ6 (
    static boolean AEPTimeout = 1
    static str AgentFile = "/opt/VRTSvcs/bin/Script50Agent"
    static str AgentDirectory = "/opt/VRTSagents/ha/bin/WebSphereMQ6"
    static str ArgList[] = { ResLogLevel, State, IState, QueueManager, CommandServer, MQUser, MQVer, EnvFile, SecondLevelMonitor, MonitorProgram, MonitorListener, MQInstallationPath }
    str ResLogLevel = INFO
    str QueueManager
    boolean CommandServer = 0
    str MQUser = mqm
    str MQVer = "6.0"
    str EnvFile
    int SecondLevelMonitor
    str MonitorProgram
    boolean MonitorListener = 0
    str MQInstallationPath
}
After installing the agent, go to the /etc/VRTSagents/ha/conf/WebSphereMQ6/ directory to view the WebSphereMQ6Types.platform.xml agent definition file.

Sample configuration when IMF is enabled

For a sample configuration when the WebSphere MQ agent is configured for IMF: See “Sample configuration when IMF is enabled” on page 99.

Sample configuration in a VCS environment

An excerpt from the main.cf file that includes a WebSphere MQ resource follows.

group WASMQ_Sol_x64 {
    SystemList = { system_A = 0, system_B = 1 }
}

    DiskGroup DG_OPT {
        DiskGroup = WAS
    }

    DiskGroup DG_VAR {
        DiskGroup = WAS
    }

Mount Mount_OPT {
    MountPoint = "/opt/mqm"
    BlockDevice = "/dev/vx/dsk/WAS/MQ_Opt"
    FSType = vxfs
    FsckOpt = "-y"
}

Mount Mount_VAR {
    MountPoint = "/var/mqm"
    BlockDevice = "/dev/vx/dsk/WAS/MQ_Vol"
    FSType = vxfs
    FsckOpt = "-y"
}

Volume Volum_OPT {
    Volume = MQ_Opt
    DiskGroup = WAS
}
Volume Volume_VAR (
  Volume = MQ_Vol
  DiskGroup = WAS
)

WebSphereMQ6 WASMQ (
  QueueManager = MQ1
  CommandServer = 1
  MQVer = "7.0"
  SecondLevelMonitor = 5
  MonitorProgram = "/ibm/mq/myMonitor.sh"
  MonitorListener = 1
  MQInstallationPath = "/opt/customLocation"
)

Mount_OPT requires Volum_OPT

Mount_VAR requires Volume_VAR

Volum_OPT requires DG_OPT

Volume_VAR requires DG_VAR

WASMQ requires Mount_OPT

WASMQ requires Mount_VAR

// resource dependency tree
// group WASMQ_Sol_x64
// {
//  WebSphereMQ6 WASMQ
//  {
//    Mount Mount_OPT
//    {
//      Volume Volum_OPT
//      {
//        DiskGroup DG_OPT
//        }
//      }
//    }
//  }
//  Mount Mount_VAR
//  {
//    }
// }
Sample configuration in a VCS One environment

To view a sample VCS One configuration file (main.xml) with an MQ Listener and a WebSphere MQ Queue Manager, go to the /etc/VRTSagents/ha/conf/WebSphereMQ6/ directory.

Sample service group configurations

Figure A-1 shows a sample service group that shows two WebSphere MQ Queue Manager resources.

This simple configuration also requires a Mount and a Disk Group resource.
Figure A-2 shows a sample service group that includes two WebSphere MQ Queue Manager resources with associated listeners.

In this example, each resource depends on a listener, which in turn depends on an IP and a Mount resource. This configuration applies to WebSphere MQ when listeners are used to provide remote services to application clients.
Figure A-2  Sample Service group configuration with listeners

Queue Manager 1

Listener 1

IP

NIC

Queue Manager 2

Listener 2

Mount

DiskGroup
Sample Configurations
Sample service group configurations
Changes introduced in previous releases

This appendix includes the following topics:

- Changes introduced in previous releases

Changes introduced in previous releases

The enhancements in the previous releases of Veritas agent for WebSphere MQ agent are as follows:

- For WebSphere MQ version 7.1, the agent enables you to specify a custom installation path for each WebSphere MQ installation.

- Fixed an issue with the handling of the PID files that the agent maintains for its Fast First Level Monitor (FFLM) feature. With this modification, the offline function removes PID files that are no longer required. As a result, the monitor function no longer processes stale PID files for FFLM.

- Added support for AIX 7.1 and Red Hat Enterprise Linux 6.0.

- The SecondLevelMonitor attribute of the Veritas agent for WebSphere MQ is deprecated if both the following software versions are installed:
  - Veritas Cluster Server (VCS) 5.1 SP1
  - Veritas agent for WebSphere MQ version 5.1.9.0

  In such a case, instead of the SecondLevelMonitor attribute, you must use the resource type level attribute ‘LevelTwoMonitorFreq’ to specify the frequency of in-depth monitoring. For more information: See Table 3-2 on page 39.

- Added Intelligent Monitoring Framework (IMF) capability and support for intelligent resource monitoring.
Added support for Fast First Level Monitor (FFLM). The agent maintains PID files based on search patterns to expedite the first level process based monitoring check.

From this release of the WebSphere MQ agent (version 5.1.9.0) onwards, the agent does not source the user's profile while executing commands. You can use the EnvFile attribute to set up the required environment. For more information: See Table 3-2 on page 39.

When the WebSphereMQ resource is offline and the agent detects the queue manager processes as running, but the second level monitor check fails, the agent cleans these processes.

Added new attribute MonitorListener from WebSphereMQ6 agent version 5.1.7.0.
If this attribute is enabled, the agent monitors and cleans MQ listener process (runmqlsr) along with other set of mandatory processes.

As per IBM recommendations, updated the list of processes that may be killed during clean entry point.

Added support for VCS 5.1 on AIX, Linux, and Solaris.

Added support for VCS One 5.0.

Added support for AIX 6.1 on pSeries.

Added support for SUSE Linux Enterprise Server 9.

Added support for VCS One 2.0.

Added support for WebSphere MQ version 6.0 and 7.0.

Added support for Solaris x86 for VCS 4.1 and 5.0

Added support for Internationalization (i18n).

Added support for ACC library 5.0 that is compliant with VCS and VCS One.

Added support for zones on Solaris 10 in a VCS environment.

Added support for the First Failure Data Capture (FFDC) feature.

Removed the following attributes:
  - MQImmediateTimeout
  - MQPreemptiveTimeout
  - FirstMonitorDelay
  - VProLogLevel

Added the following attributes:
Added support for monitoring the Command Server for WebSphere MQ version 6.0 and later. The WebSphere MQ enables remote administration of queue managers. To facilitate this functionality, a Command Server can run within a WebSphere MQ Queue Manager. This Command Server executes commands sent to the Queue Manager.
Changes introduced in previous releases

Changes introduced in previous releases
Index

A
about ACC library 19
ACC library
  installing 19
  removing 31
add
  resource type
    Policy Master on UNIX 24
    Policy Master Server on Windows 26
agent
  i18n support 18
  importing agent types files 35
  installing, VCS environment 20
  overview 11
  uninstalling, VCS environment 26
  upgrading 31
  what’s new 12
agent attributes 41
  CommandServer 38
  EnvFile 39
  LevelTwoMonitorFreq 40
  MonitorProgram 39
  MQInstallationPath 41
  MQUser 38
  MQVer 38
  QueueManager 38
  ResLogLevel 39
  SecondLevelMonitor 40
agent configuration file
  importing 35
agent functions
  clean 15
  imf_getnotification 73
  imf_init 73
  imf_register 73
  monitor 14
  offline 14
  online 13
agent installation
  general requirements 17
  steps to install 20
B
before
  configuring the service groups 81
C
clustering
  active-active configuration 83
  active-passive configuration 82
  configuring a WebSphere MQ resource 82
  WebSphere MQ Queue Managers 81
configuring
  WebSphere MQ Listener 85
configuring monitor function 41
E
executing custom monitor program 41
I
install
  agent package
    using CLI 23
    using installer 22
Intelligent Monitoring Framework (IMF)
  about 71
  agent functions 73
  attributes 73
  configuring 75
  troubleshooting 92
L
logs
  reviewing cluster log files 91
  reviewing error log files 91
  using trace level logging 92
R
remove
  agent package
    using CLI 29
remove (continued)
agent package (continued)
using installer 28
resource type
Policy Master on UNIX 30
removing agent, VCS environment 26

S
sample configurations
sample file 99
service group 101
VCS environment 99
VCS One environment 101
starting the WebSphere MQ Queue Manager instance
outside a cluster 88

T
troubleshooting
meeting prerequisites 88
reviewing error log files 91
reviewing cluster log files 91
using trace level logging 92
using correct software 87

U
uninstalling agent, VCS environment 26
upgrading agent 31
VCS One environment 33

V
virtual environment
before configuring monitoring 47
configuring WebSphere MQ Queue Manager for
high availability 50
infrastructure service groups 56
launching the wizard 48
resource dependency 55
sample configurations 60
troubleshooting 59
wizard limitations 58

W
WebSphere MQ Queue Manager
configuring resources 88
monitoring processes 89
starting instance outside cluster 88